GPS-Gaussian:通用像素級3D高斯飛濺技術用於實時人體新視角合成
GPS-Gaussian: Generalizable Pixel-wise 3D Gaussian Splatting for Real-time Human Novel View Synthesis
December 4, 2023
作者: Shunyuan Zheng, Boyao Zhou, Ruizhi Shao, Boning Liu, Shengping Zhang, Liqiang Nie, Yebin Liu
cs.AI
摘要
我們提出了一種新方法,稱為GPS-Gaussian,用於以實時方式合成角色的新視圖。所提出的方法在稀疏視圖相機設置下實現了2K分辨率渲染。與原始的高斯飛灰或神經隱式渲染方法不同,這些方法需要對每個主題進行優化,我們引入了在源視圖上定義的高斯參數圖,並直接回歸高斯飛灰屬性,以便即時合成新視圖,而無需進行任何微調或優化。為此,我們在大量人體掃描數據上訓練我們的高斯參數回歸模塊,同時還有一個深度估計模塊,將2D參數圖提升到3D空間。所提出的框架是完全可微的,對幾個數據集進行的實驗表明,我們的方法優於最先進的方法,同時實現了超越的渲染速度。
English
We present a new approach, termed GPS-Gaussian, for synthesizing novel views
of a character in a real-time manner. The proposed method enables 2K-resolution
rendering under a sparse-view camera setting. Unlike the original Gaussian
Splatting or neural implicit rendering methods that necessitate per-subject
optimizations, we introduce Gaussian parameter maps defined on the source views
and regress directly Gaussian Splatting properties for instant novel view
synthesis without any fine-tuning or optimization. To this end, we train our
Gaussian parameter regression module on a large amount of human scan data,
jointly with a depth estimation module to lift 2D parameter maps to 3D space.
The proposed framework is fully differentiable and experiments on several
datasets demonstrate that our method outperforms state-of-the-art methods while
achieving an exceeding rendering speed.