ChatPaper.aiChatPaper

自信噴濺:基於可學習Beta分佈的3D高斯噴濺置信度壓縮

Confident Splatting: Confidence-Based Compression of 3D Gaussian Splatting via Learnable Beta Distributions

June 28, 2025
作者: AmirHossein Naghi Razlighi, Elaheh Badali Golezani, Shohreh Kasaei
cs.AI

摘要

3D高斯潑濺技術雖能實現高品質的即時渲染,但通常會產生數百萬個潑濺點,導致過度的儲存與計算開銷。我們提出了一種基於可學習置信度分數的新型有損壓縮方法,這些分數被建模為Beta分佈。每個潑濺點的置信度通過重建感知的損失函數進行優化,從而能夠在保持視覺保真度的同時,剔除低置信度的潑濺點。所提出的方法與架構無關,可應用於任何高斯潑濺變體。此外,平均置信度值可作為評估場景品質的新指標。大量實驗表明,與先前工作相比,該方法在壓縮與保真度之間達到了更優的平衡。我們的程式碼與資料已公開於https://github.com/amirhossein-razlighi/Confident-Splatting。
English
3D Gaussian Splatting enables high-quality real-time rendering but often produces millions of splats, resulting in excessive storage and computational overhead. We propose a novel lossy compression method based on learnable confidence scores modeled as Beta distributions. Each splat's confidence is optimized through reconstruction-aware losses, enabling pruning of low-confidence splats while preserving visual fidelity. The proposed approach is architecture-agnostic and can be applied to any Gaussian Splatting variant. In addition, the average confidence values serve as a new metric to assess the quality of the scene. Extensive experiments demonstrate favorable trade-offs between compression and fidelity compared to prior work. Our code and data are publicly available at https://github.com/amirhossein-razlighi/Confident-Splatting
PDF11July 2, 2025