Table-GPT:針對多樣表格任務進行調整的 GPT
Table-GPT: Table-tuned GPT for Diverse Table Tasks
October 13, 2023
作者: Peng Li, Yeye He, Dror Yashar, Weiwei Cui, Song Ge, Haidong Zhang, Danielle Rifinski Fainman, Dongmei Zhang, Surajit Chaudhuri
cs.AI
摘要
語言模型,如GPT-3.5和ChatGPT,展示了出色的能力,能夠遵循多樣的人類指示並執行各種任務。然而,通過使用一系列基本的表格理解任務來探測語言模型時,我們觀察到今天的語言模型在許多與表格相關的任務上仍然不夠優化,這可能是因為它們主要是在一維自然語言文本上預先訓練,而關係表格是二維對象。
在這項工作中,我們提出了一個新的「表格微調」範式,我們繼續訓練/微調像GPT-3.5和ChatGPT這樣的語言模型,使用從真實表格合成的多樣化表格任務作為訓練數據,旨在增強語言模型理解表格並執行表格任務的能力。我們展示了我們的結果Table-GPT模型展示了(1)更好的表格理解能力,通過在廣泛的表格任務中持續優於普通的GPT-3.5和ChatGPT,包括保留未見過的任務,以及(2)強大的泛化能力,它能夠回應多樣的人類指示來執行新的表格任務,方式類似於GPT-3.5和ChatGPT。
English
Language models, such as GPT-3.5 and ChatGPT, demonstrate remarkable
abilities to follow diverse human instructions and perform a wide range of
tasks. However, when probing language models using a range of basic
table-understanding tasks, we observe that today's language models are still
sub-optimal in many table-related tasks, likely because they are pre-trained
predominantly on one-dimensional natural-language texts, whereas
relational tables are two-dimensional objects.
In this work, we propose a new "table-tuning" paradigm, where we
continue to train/fine-tune language models like GPT-3.5 and ChatGPT, using
diverse table-tasks synthesized from real tables as training data, with the
goal of enhancing language models' ability to understand tables and perform
table tasks. We show that our resulting Table-GPT models demonstrate (1) better
table-understanding capabilities, by consistently outperforming the
vanilla GPT-3.5 and ChatGPT, on a wide-range of table tasks, including holdout
unseen tasks, and (2) strong generalizability, in its ability to respond
to diverse human instructions to perform new table-tasks, in a manner similar
to GPT-3.5 and ChatGPT.