AReUReDi:多目标引导下离散流精炼的退火校正更新
AReUReDi: Annealed Rectified Updates for Refining Discrete Flows with Multi-Objective Guidance
September 30, 2025
作者: Tong Chen, Yinuo Zhang, Pranam Chatterjee
cs.AI
摘要
設計滿足多重且往往相互衝突目標的序列,是治療與生物分子工程中的核心挑戰。現有的生成框架主要在連續空間中運作,並依循單一目標指導,而離散方法則缺乏對多目標帕累托最優性的保證。我們引入了AReUReDi(退火校正更新以精煉離散流),這是一種具有理論保證能收斂至帕累托前沿的離散優化算法。基於校正離散流(ReDi),AReUReDi結合了切比雪夫標量化、局部平衡提案以及退火Metropolis-Hastings更新,以偏向於帕累托最優狀態的採樣,同時保持分佈不變性。應用於肽和SMILES序列設計時,AReUReDi同時優化了多達五種治療特性(包括親和力、溶解度、溶血性、半衰期和非污損性),並超越了基於進化和擴散的基準方法。這些成果確立了AReUReDi作為一個強大的、基於序列的多屬性生物分子生成框架。
English
Designing sequences that satisfy multiple, often conflicting, objectives is a
central challenge in therapeutic and biomolecular engineering. Existing
generative frameworks largely operate in continuous spaces with
single-objective guidance, while discrete approaches lack guarantees for
multi-objective Pareto optimality. We introduce AReUReDi (Annealed Rectified
Updates for Refining Discrete Flows), a discrete optimization algorithm with
theoretical guarantees of convergence to the Pareto front. Building on
Rectified Discrete Flows (ReDi), AReUReDi combines Tchebycheff scalarization,
locally balanced proposals, and annealed Metropolis-Hastings updates to bias
sampling toward Pareto-optimal states while preserving distributional
invariance. Applied to peptide and SMILES sequence design, AReUReDi
simultaneously optimizes up to five therapeutic properties (including affinity,
solubility, hemolysis, half-life, and non-fouling) and outperforms both
evolutionary and diffusion-based baselines. These results establish AReUReDi as
a powerful, sequence-based framework for multi-property biomolecule generation.