scPilot:基於大型語言模型推理的自動化單細胞分析與發現系統
scPilot: Large Language Model Reasoning Toward Automated Single-Cell Analysis and Discovery
February 12, 2026
作者: Yiming Gao, Zhen Wang, Jefferson Chen, Mark Antkowiak, Mengzhou Hu, JungHo Kong, Dexter Pratt, Jieyuan Liu, Enze Ma, Zhiting Hu, Eric P. Xing
cs.AI
摘要
我們推出scPilot——首個實踐組學原生推理的系統性框架:大型語言模型(LLM)能以自然語言對話,同時直接檢視單細胞RNA測序數據並按需調用生物信息學工具。scPilot將核心單細胞分析(包括細胞類型註釋、發育軌跡重建和轉錄因子靶向分析)轉化為逐步推理問題,要求模型必須解決、論證並在必要時根據新證據修正結論。
為量化進展,我們發布scBench——包含9個專家精心策劃的數據集與評分模組,可精準評估scPilot相較各類LLM的組學原生推理能力。使用o1模型的實驗表明,迭代式組學原生推理使細胞類型註釋的平均準確率提升11%;Gemini-2.5-Pro相較單次提示法將軌跡圖編輯距離縮減30%,同時生成可解釋標記基因模糊性與調控邏輯的透明推理軌跡。通過將LLM錨定於原始組學數據,scPilot實現了可審計、可解釋且具診斷價值的單細胞分析。
代碼、數據及軟件包已開源於:https://github.com/maitrix-org/scPilot
English
We present scPilot, the first systematic framework to practice omics-native reasoning: a large language model (LLM) converses in natural language while directly inspecting single-cell RNA-seq data and on-demand bioinformatics tools. scPilot converts core single-cell analyses, i.e., cell-type annotation, developmental-trajectory reconstruction, and transcription-factor targeting, into step-by-step reasoning problems that the model must solve, justify, and, when needed, revise with new evidence.
To measure progress, we release scBench, a suite of 9 expertly curated datasets and graders that faithfully evaluate the omics-native reasoning capability of scPilot w.r.t various LLMs. Experiments with o1 show that iterative omics-native reasoning lifts average accuracy by 11% for cell-type annotation and Gemini-2.5-Pro cuts trajectory graph-edit distance by 30% versus one-shot prompting, while generating transparent reasoning traces explain marker gene ambiguity and regulatory logic. By grounding LLMs in raw omics data, scPilot enables auditable, interpretable, and diagnostically informative single-cell analyses.
Code, data, and package are available at https://github.com/maitrix-org/scPilot