ChatPaper.aiChatPaper

RoboTAP:用於少樣本視覺模仿的任意點追踪

RoboTAP: Tracking Arbitrary Points for Few-Shot Visual Imitation

August 30, 2023
作者: Mel Vecerik, Carl Doersch, Yi Yang, Todor Davchev, Yusuf Aytar, Guangyao Zhou, Raia Hadsell, Lourdes Agapito, Jon Scholz
cs.AI

摘要

為了讓機器人在實驗室以外的環境和特定工廠中發揮作用,我們需要一種能夠快速教導它們新的有用行為的方法。目前的方法要麼缺乏足夠的通用性,無法在沒有特定任務工程的情況下引入新任務,要麼缺乏足夠的數據效率,無法在實際應用中使用的時間內完成這一過程。在這項研究中,我們探索了密集跟踪作為一種表徵工具,以實現更快速、更通用的示範學習。我們的方法利用“跟蹤任意點”(TAP)模型來分離示範中的相關運動,並對低層控制器進行參數化,以在場景配置變化時重現這種運動。我們展示了這導致了能夠解決複雜的物體排列任務,如形狀匹配、堆疊,甚至全程跟隨任務,如應用膠水並將物體粘合在一起的強健機器人策略,所有這些都是通過幾分鐘內收集的示範完成的。
English
For robots to be useful outside labs and specialized factories we need a way to teach them new useful behaviors quickly. Current approaches lack either the generality to onboard new tasks without task-specific engineering, or else lack the data-efficiency to do so in an amount of time that enables practical use. In this work we explore dense tracking as a representational vehicle to allow faster and more general learning from demonstration. Our approach utilizes Track-Any-Point (TAP) models to isolate the relevant motion in a demonstration, and parameterize a low-level controller to reproduce this motion across changes in the scene configuration. We show this results in robust robot policies that can solve complex object-arrangement tasks such as shape-matching, stacking, and even full path-following tasks such as applying glue and sticking objects together, all from demonstrations that can be collected in minutes.
PDF121December 15, 2024