MedFuzz:探索大型語言模型在醫學問答中的穩健性
MedFuzz: Exploring the Robustness of Large Language Models in Medical Question Answering
June 3, 2024
作者: Robert Osazuwa Ness, Katie Matton, Hayden Helm, Sheng Zhang, Junaid Bajwa, Carey E. Priebe, Eric Horvitz
cs.AI
摘要
大型語言模型(LLM)在醫學問答基準上取得了令人印象深刻的表現。然而,高基準準確度並不意味著性能可以泛化到真實世界的臨床環境。醫學問答基準依賴與量化LLM性能一致的假設,但這些假設在臨床開放世界中可能不成立。然而,LLM學習了廣泛的知識,可以幫助LLM在實際條件下泛化,而不受慶祝基準中不切實際假設的影響。我們希望量化當基準假設被違反時,LLM醫學問答基準性能的泛化程度。具體來說,我們提出了一種對抗方法,稱為MedFuzz(用於醫學模糊)。MedFuzz試圖以混淆LLM為目的修改基準問題。我們通過針對MedQA基準中呈現的患者特徵的強假設展示了這種方法。成功的“攻擊”以一種不太可能欺騙醫學專家但仍然“欺騙”LLM從正確答案變為不正確答案的方式修改基準項目。此外,我們提出了一種排列測試技術,可以確保成功的攻擊在統計上具有顯著性。我們展示了如何使用在“MedFuzzed”基準上的性能,以及單個成功的攻擊。這些方法顯示了在更現實的環境中提供LLM運作穩健性洞察的潛力。
English
Large language models (LLM) have achieved impressive performance on medical
question-answering benchmarks. However, high benchmark accuracy does not imply
that the performance generalizes to real-world clinical settings. Medical
question-answering benchmarks rely on assumptions consistent with quantifying
LLM performance but that may not hold in the open world of the clinic. Yet LLMs
learn broad knowledge that can help the LLM generalize to practical conditions
regardless of unrealistic assumptions in celebrated benchmarks. We seek to
quantify how well LLM medical question-answering benchmark performance
generalizes when benchmark assumptions are violated. Specifically, we present
an adversarial method that we call MedFuzz (for medical fuzzing). MedFuzz
attempts to modify benchmark questions in ways aimed at confounding the LLM. We
demonstrate the approach by targeting strong assumptions about patient
characteristics presented in the MedQA benchmark. Successful "attacks" modify a
benchmark item in ways that would be unlikely to fool a medical expert but
nonetheless "trick" the LLM into changing from a correct to an incorrect
answer. Further, we present a permutation test technique that can ensure a
successful attack is statistically significant. We show how to use performance
on a "MedFuzzed" benchmark, as well as individual successful attacks. The
methods show promise at providing insights into the ability of an LLM to
operate robustly in more realistic settings.Summary
AI-Generated Summary