微調語言模型以文本形式生成穩定的無機材料
Fine-Tuned Language Models Generate Stable Inorganic Materials as Text
February 6, 2024
作者: Nate Gruver, Anuroop Sriram, Andrea Madotto, Andrew Gordon Wilson, C. Lawrence Zitnick, Zachary Ulissi
cs.AI
摘要
我們提出對大型語言模型進行微調,以生成穩定材料。儘管這種做法有些不尋常,但在將大型語言模型微調為基於文本編碼的原子數據時,實施簡單且可靠,約有90%的樣本結構遵守原子位置和電荷的物理約束。通過從學習的機器學習潛力和黃金標準密度泛函理論計算的能量超出凸起計算,我們展示了我們最強的模型(微調的LLaMA-2 70B)可以生成材料,預測為亞穩定的概率約為CDVAE(一種競爭擴散模型)的兩倍(49% vs 28%)。由於文本提示的固有靈活性,我們的模型可以同時用於無條件生成穩定材料、填充部分結構以及文本條件生成。最後,我們展示了語言模型捕捉晶體結構的關鍵對稱性能力隨著模型規模的增加而提高,這表明預訓練的大型語言模型的偏見出奇地適合原子數據。
English
We propose fine-tuning large language models for generation of stable
materials. While unorthodox, fine-tuning large language models on text-encoded
atomistic data is simple to implement yet reliable, with around 90% of sampled
structures obeying physical constraints on atom positions and charges. Using
energy above hull calculations from both learned ML potentials and
gold-standard DFT calculations, we show that our strongest model (fine-tuned
LLaMA-2 70B) can generate materials predicted to be metastable at about twice
the rate (49% vs 28%) of CDVAE, a competing diffusion model. Because of text
prompting's inherent flexibility, our models can simultaneously be used for
unconditional generation of stable material, infilling of partial structures
and text-conditional generation. Finally, we show that language models' ability
to capture key symmetries of crystal structures improves with model scale,
suggesting that the biases of pretrained LLMs are surprisingly well-suited for
atomistic data.