Tied-Lora: 通過權重綁定增強 LoRA 的參數效率
Tied-Lora: Enhacing parameter efficiency of LoRA with weight tying
November 16, 2023
作者: Adithya Renduchintala, Tugrul Konuk, Oleksii Kuchaiev
cs.AI
摘要
我們提出了Tied-LoRA,一種簡單的範式,利用權重綁定和選擇性訓練,進一步提高低秩適應(LoRA)方法的參數效率。我們的研究包括所有可行的參數訓練/凍結組合,結合權重綁定,以確定在性能和可訓練參數數量之間的最佳平衡。通過涵蓋各種任務和兩個基礎語言模型的實驗,我們提供了分析,揭示了效率和性能之間的折衷。我們的實驗揭示了一個特定的Tied-LoRA配置,通過僅使用標準LoRA方法使用的參數的13%,在幾個任務中展現出可比擬的性能。
English
We propose Tied-LoRA, a simple paradigm utilizes weight tying and selective
training to further increase parameter efficiency of the Low-rank adaptation
(LoRA) method. Our investigations include all feasible combinations parameter
training/freezing in conjunction with weight tying to identify the optimal
balance between performance and the number of trainable parameters. Through
experiments covering a variety of tasks and two base language models, we
provide analysis revealing trade-offs between efficiency and performance. Our
experiments uncovered a particular Tied-LoRA configuration that stands out by
demonstrating comparable performance across several tasks while employing only
13~\% percent of parameters utilized by the standard LoRA method.