信念與命運:Transformer 在組合性上的限制
Faith and Fate: Limits of Transformers on Compositionality
May 29, 2023
作者: Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jian, Bill Yuchen Lin, Peter West, Chandra Bhagavatula, Ronan Le Bras, Jena D. Hwang, Soumya Sanyal, Sean Welleck, Xiang Ren, Allyson Ettinger, Zaid Harchaoui, Yejin Choi
cs.AI
摘要
Transformer 大型語言模型(LLMs)以其在需要複雜多步推理的任務上表現出色而受到讚賞。然而,這些模型同時在一些看似微不足道的問題上展示出失敗。這引出了一個問題:這些錯誤是偶然的嗎,還是它們暗示了更為重大的限制?為了揭開Transformer的神秘面紗,我們研究了這些模型在三個代表性的組合任務上的極限 — 多位數乘法、邏輯網格謎題和一個經典的動態規劃問題。這些任務需要將問題分解為子步驟,並將這些步驟綜合成一個精確的答案。我們將組合任務定義為計算圖,以系統化地量化複雜性水平,並將推理步驟分解為中間子程序。我們的實證研究結果表明,Transformer通過將多步組合推理簡化為線性化子圖匹配來解決組合任務,而不一定發展出系統性的解決問題技能。為了結束我們的實證研究,我們提出了關於抽象多步推理問題的理論論點,突顯了Transformer的表現將隨著任務複雜度的增加而迅速下降。
English
Transformer large language models (LLMs) have sparked admiration for their
exceptional performance on tasks that demand intricate multi-step reasoning.
Yet, these models simultaneously show failures on surprisingly trivial
problems. This begs the question: Are these errors incidental, or do they
signal more substantial limitations? In an attempt to demystify Transformers,
we investigate the limits of these models across three representative
compositional tasks -- multi-digit multiplication, logic grid puzzles, and a
classic dynamic programming problem. These tasks require breaking problems down
into sub-steps and synthesizing these steps into a precise answer. We formulate
compositional tasks as computation graphs to systematically quantify the level
of complexity, and break down reasoning steps into intermediate sub-procedures.
Our empirical findings suggest that Transformers solve compositional tasks by
reducing multi-step compositional reasoning into linearized subgraph matching,
without necessarily developing systematic problem-solving skills. To round off
our empirical study, we provide theoretical arguments on abstract multi-step
reasoning problems that highlight how Transformers' performance will rapidly
decay with increased task complexity.