为网络决策提供主动与被动引导:基于WebSeek的设计探索研究
Facilitating Proactive and Reactive Guidance for Decision Making on the Web: A Design Probe with WebSeek
January 21, 2026
作者: Yanwei Huang, Arpit Narechania
cs.AI
摘要
诸如ChatGPT Agent和GenSpark等网络AI代理正日益被用于常规网页任务,但它们仍依赖基于文本的输入提示,缺乏对用户意图的主动检测,且无法支持交互式数据分析和决策。我们推出WebSeek——一种混合主动式浏览器扩展,使用户能够从网页中发现并提取信息,进而在交互式画布中灵活构建、转换和优化具象数据产物(如表格、列表和可视化图表)。在该环境中,用户可执行包括连接表格或创建可视化等数据转换在内的分析操作,而内置AI既能主动提供情境感知的指导与自动化支持,也能响应用户的显式请求。一项以WebSeek为探针的探索性用户研究(N=15)揭示了参与者多样化的分析策略,凸显了他们在人机协作过程中对透明度和控制权的需求。
English
Web AI agents such as ChatGPT Agent and GenSpark are increasingly used for routine web-based tasks, yet they still rely on text-based input prompts, lack proactive detection of user intent, and offer no support for interactive data analysis and decision making. We present WebSeek, a mixed-initiative browser extension that enables users to discover and extract information from webpages to then flexibly build, transform, and refine tangible data artifacts-such as tables, lists, and visualizations-all within an interactive canvas. Within this environment, users can perform analysis-including data transformations such as joining tables or creating visualizations-while an in-built AI both proactively offers context-aware guidance and automation, and reactively responds to explicit user requests. An exploratory user study (N=15) with WebSeek as a probe reveals participants' diverse analysis strategies, underscoring their desire for transparency and control during human-AI collaboration.