邁向通用智能代理:通過環境擴展
Towards General Agentic Intelligence via Environment Scaling
September 16, 2025
作者: Runnan Fang, Shihao Cai, Baixuan Li, Jialong Wu, Guangyu Li, Wenbiao Yin, Xinyu Wang, Xiaobin Wang, Liangcai Su, Zhen Zhang, Shibin Wu, Zhengwei Tao, Yong Jiang, Pengjun Xie, Fei Huang, Jingren Zhou
cs.AI
摘要
高階的代理智能是將大型語言模型部署於實際應用中的先決條件。多樣化的現實世界API要求精確且穩健的函數調用智能,這需要代理在各種環境中通過互動來發展這些能力。函數調用能力的廣度與代理訓練環境的多樣性密切相關。在本研究中,我們通過擴展環境作為提升通用代理智能的一步,這引發了兩個核心挑戰:(i) 如何以系統化的方式擴展環境,以及(ii) 如何從與這些環境互動中獲得的經驗中有效訓練代理能力。為解決這些問題,我們設計了一個可擴展的框架,該框架自動構建完全模擬的異質環境,從而系統性地拓寬函數調用場景的空間。我們進一步採用了一種兩階段的代理微調策略:首先賦予代理基礎的代理能力,然後針對特定領域進行專業化。在代理基準測試、tau-bench、tau2-Bench和ACEBench上的廣泛實驗表明,我們訓練的模型AgentScaler顯著增強了模型的函數調用能力。
English
Advanced agentic intelligence is a prerequisite for deploying Large Language
Models in practical, real-world applications. Diverse real-world APIs demand
precise, robust function-calling intelligence, which needs agents to develop
these capabilities through interaction in varied environments. The breadth of
function-calling competence is closely tied to the diversity of environments in
which agents are trained. In this work, we scale up environments as a step
towards advancing general agentic intelligence. This gives rise to two central
challenges: (i) how to scale environments in a principled manner, and (ii) how
to effectively train agentic capabilities from experiences derived through
interactions with these environments. To address these, we design a scalable
framework that automatically constructs heterogeneous environments that are
fully simulated, systematically broadening the space of function-calling
scenarios. We further adapt a two-phase agent fine-tuning strategy: first
endowing agents with fundamental agentic capabilities, then specializing them
for domain-specific contexts. Extensive experiments on agentic benchmarks,
tau-bench, tau2-Bench, and ACEBench, demonstrate that our trained model,
AgentScaler, significantly enhances the function-calling capability of models.