ChatPaper.aiChatPaper

FastMesh:通過組件解耦實現高效的藝術化網格生成

FastMesh:Efficient Artistic Mesh Generation via Component Decoupling

August 26, 2025
作者: Jeonghwan Kim, Yushi Lan, Armando Fortes, Yongwei Chen, Xingang Pan
cs.AI

摘要

近年來的網格生成方法通常將三角形網格轉換為一系列標記,並訓練自回歸模型來依次生成這些標記。儘管取得了顯著進展,但這類標記序列不可避免地會重複使用頂點以完整表示流形網格,因為每個頂點被多個面共享。這種冗餘導致標記序列過長,生成過程效率低下。本文提出了一種高效框架,通過分別處理頂點和面來生成藝術網格,顯著減少了冗餘。我們僅使用自回歸模型生成頂點,將所需標記數量減少至現有最緊湊標記器的約23%。接著,我們利用雙向變壓器捕捉頂點間的關係,並構建定義網格面的鄰接矩陣,從而一步完成網格生成。為了進一步提升生成質量,我們引入了一種保真度增強器來精煉頂點位置,使其排列更加自然,並提出了一種後處理框架以去除不良的邊連接。實驗結果表明,與最先進的方法相比,我們的網格生成速度提高了8倍以上,同時生成更高質量的網格。
English
Recent mesh generation approaches typically tokenize triangle meshes into sequences of tokens and train autoregressive models to generate these tokens sequentially. Despite substantial progress, such token sequences inevitably reuse vertices multiple times to fully represent manifold meshes, as each vertex is shared by multiple faces. This redundancy leads to excessively long token sequences and inefficient generation processes. In this paper, we propose an efficient framework that generates artistic meshes by treating vertices and faces separately, significantly reducing redundancy. We employ an autoregressive model solely for vertex generation, decreasing the token count to approximately 23\% of that required by the most compact existing tokenizer. Next, we leverage a bidirectional transformer to complete the mesh in a single step by capturing inter-vertex relationships and constructing the adjacency matrix that defines the mesh faces. To further improve the generation quality, we introduce a fidelity enhancer to refine vertex positioning into more natural arrangements and propose a post-processing framework to remove undesirable edge connections. Experimental results show that our method achieves more than 8times faster speed on mesh generation compared to state-of-the-art approaches, while producing higher mesh quality.
PDF11August 27, 2025