ChatPaper.aiChatPaper

結構性對話,階層性行動:LLM多智能體系統的協作框架

Talk Structurally, Act Hierarchically: A Collaborative Framework for LLM Multi-Agent Systems

February 16, 2025
作者: Zhao Wang, Sota Moriyama, Wei-Yao Wang, Briti Gangopadhyay, Shingo Takamatsu
cs.AI

摘要

最近在基於LLM的多智能體(LLM-MA)系統方面取得了一些進展,但在智能體協作處理複雜任務時,仍存在著重大挑戰,特別是在管理溝通和改進方面。本文提出了一個名為「結構化對話,階層化行動」(TalkHier)的新框架,該框架引入了一個結構化通訊協議,用於豐富上下文的交流,以及一個階層化改進系統,以應對不正確的輸出、虛假信息和偏見等問題。TalkHier在各種任務上超越了各種類型的最先進技術,包括推理擴展模型(OpenAI-o1)、開源多智能體模型(例如AgentVerse)和當前LLM和單智能體基準(例如ReAct、GPT4o)上的多數投票策略,這些任務包括開放領域問答、特定領域的選擇性提問和實用廣告文本生成。這些結果突顯了其為LLM-MA系統設定新標準的潛力,為更有效、適應性強且協作性強的多智能體框架鋪平了道路。代碼可在https://github.com/sony/talkhier找到。
English
Recent advancements in LLM-based multi-agent (LLM-MA) systems have shown promise, yet significant challenges remain in managing communication and refinement when agents collaborate on complex tasks. In this paper, we propose Talk Structurally, Act Hierarchically (TalkHier), a novel framework that introduces a structured communication protocol for context-rich exchanges and a hierarchical refinement system to address issues such as incorrect outputs, falsehoods, and biases. TalkHier surpasses various types of SoTA, including inference scaling model (OpenAI-o1), open-source multi-agent models (e.g., AgentVerse), and majority voting strategies on current LLM and single-agent baselines (e.g., ReAct, GPT4o), across diverse tasks, including open-domain question answering, domain-specific selective questioning, and practical advertisement text generation. These results highlight its potential to set a new standard for LLM-MA systems, paving the way for more effective, adaptable, and collaborative multi-agent frameworks. The code is available https://github.com/sony/talkhier.

Summary

AI-Generated Summary

PDF132February 18, 2025