AyurParam:面向阿育吠陀医学的尖端双语语言模型
AyurParam: A State-of-the-Art Bilingual Language Model for Ayurveda
November 4, 2025
作者: Mohd Nauman, Sravan Gvm, Vijay Devane, Shyam Pawar, Viraj Thakur, Kundeshwar Pundalik, Piyush Sawarkar, Rohit Saluja, Maunendra Desarkar, Ganesh Ramakrishnan
cs.AI
摘要
当前的大型语言模型虽然在通用任务上表现出色,但在需要深厚文化、语言及专业知识的垂直领域始终表现欠佳。以阿育吠陀为代表的传统医学体系蕴含数百年来积淀的精细文本与临床知识,主流大语言模型难以准确解读或应用这些专业内容。我们推出AyurParam-2.9B——基于Param-1-2.9B微调的专业领域双语模型,其训练数据涵盖经专家严格编纂的阿育吠陀经典文献与临床指南。该数据集融合情境感知、推理思维及客观题型问答,包含英语与印地语双版本,并通过严谨标注机制确保事实准确性与指导明晰度。在BhashaBench-Ayur基准测试中,AyurParam不仅优于同参数规模(1.5-30亿)的所有开源指令微调模型,更在部分任务上超越参数量更大的模型。这一成果印证了专业领域适配与高质量监督数据对于构建可靠、文化适配的专业医学人工智能系统的重要性。
English
Current large language models excel at broad, general-purpose tasks, but
consistently underperform when exposed to highly specialized domains that
require deep cultural, linguistic, and subject-matter expertise. In particular,
traditional medical systems such as Ayurveda embody centuries of nuanced
textual and clinical knowledge that mainstream LLMs fail to accurately
interpret or apply. We introduce AyurParam-2.9B, a domain-specialized,
bilingual language model fine-tuned from Param-1-2.9B using an extensive,
expertly curated Ayurveda dataset spanning classical texts and clinical
guidance. AyurParam's dataset incorporates context-aware, reasoning, and
objective-style Q&A in both English and Hindi, with rigorous annotation
protocols for factual precision and instructional clarity. Benchmarked on
BhashaBench-Ayur, AyurParam not only surpasses all open-source
instruction-tuned models in its size class (1.5--3B parameters), but also
demonstrates competitive or superior performance compared to much larger
models. The results from AyurParam highlight the necessity for authentic domain
adaptation and high-quality supervision in delivering reliable, culturally
congruent AI for specialized medical knowledge.