Point-Bind和Point-LLM:將點雲與多模態對齊,用於3D理解、生成和指示跟隨。
Point-Bind & Point-LLM: Aligning Point Cloud with Multi-modality for 3D Understanding, Generation, and Instruction Following
September 1, 2023
作者: Ziyu Guo, Renrui Zhang, Xiangyang Zhu, Yiwen Tang, Xianzheng Ma, Jiaming Han, Kexin Chen, Peng Gao, Xianzhi Li, Hongsheng Li, Pheng-Ann Heng
cs.AI
摘要
我們介紹了Point-Bind,一個3D多模態模型,將點雲與2D圖像、語言、音頻和視頻對齊。在ImageBind的指導下,我們在3D和多模態之間建立了一個聯合嵌入空間,實現了許多有前途的應用,例如任意到3D生成、3D嵌入算術和3D開放世界理解。除此之外,我們進一步提出了Point-LLM,這是第一個遵循3D多模態指令的3D大型語言模型(LLM)。通過參數高效的微調技術,Point-LLM將Point-Bind的語義注入到預先訓練的LLM中,例如LLaMA,它不需要3D指令數據,但表現出優越的3D和多模態問答能力。我們希望我們的工作可以為將3D點雲擴展到多模態應用的社區提供一些啟示。代碼可在https://github.com/ZiyuGuo99/Point-Bind_Point-LLM找到。
English
We introduce Point-Bind, a 3D multi-modality model aligning point clouds with
2D image, language, audio, and video. Guided by ImageBind, we construct a joint
embedding space between 3D and multi-modalities, enabling many promising
applications, e.g., any-to-3D generation, 3D embedding arithmetic, and 3D
open-world understanding. On top of this, we further present Point-LLM, the
first 3D large language model (LLM) following 3D multi-modal instructions. By
parameter-efficient fine-tuning techniques, Point-LLM injects the semantics of
Point-Bind into pre-trained LLMs, e.g., LLaMA, which requires no 3D instruction
data, but exhibits superior 3D and multi-modal question-answering capacity. We
hope our work may cast a light on the community for extending 3D point clouds
to multi-modality applications. Code is available at
https://github.com/ZiyuGuo99/Point-Bind_Point-LLM.