Swift:一種用於高效天氣預報的自回歸一致性模型
Swift: An Autoregressive Consistency Model for Efficient Weather Forecasting
September 30, 2025
作者: Jason Stock, Troy Arcomano, Rao Kotamarthi
cs.AI
摘要
擴散模型為概率天氣預報提供了一個基於物理的框架,但其在推斷過程中通常依賴於緩慢的迭代求解器,這使得它們在次季節至季節(S2S)應用中顯得不太實用,因為這些應用需要長時間的預報領先期和基於領域的校準。為解決這一問題,我們引入了Swift,這是一種單步一致性模型,首次實現了以連續排名概率得分(CRPS)為目標的概率流模型的自回歸微調。這消除了對多模型集成或參數擾動的需求。結果顯示,Swift能夠生成具有技巧性的6小時預報,並在長達75天的時間內保持穩定,其運行速度比最先進的擴散基準模型快39倍,同時達到了與基於數值運算的業務化IFS ENS相媲美的預報技巧。這標誌著從中期到季節尺度上,向高效可靠的集成預報邁進了一步。
English
Diffusion models offer a physically grounded framework for probabilistic
weather forecasting, but their typical reliance on slow, iterative solvers
during inference makes them impractical for subseasonal-to-seasonal (S2S)
applications where long lead-times and domain-driven calibration are essential.
To address this, we introduce Swift, a single-step consistency model that, for
the first time, enables autoregressive finetuning of a probability flow model
with a continuous ranked probability score (CRPS) objective. This eliminates
the need for multi-model ensembling or parameter perturbations. Results show
that Swift produces skillful 6-hourly forecasts that remain stable for up to 75
days, running 39times faster than state-of-the-art diffusion baselines while
achieving forecast skill competitive with the numerical-based, operational IFS
ENS. This marks a step toward efficient and reliable ensemble forecasting from
medium-range to seasonal-scales.