ChatPaper.aiChatPaper

對齊如何提升大型語言模型的多語言能力?從語言神經元視角探討

How does Alignment Enhance LLMs' Multilingual Capabilities? A Language Neurons Perspective

May 27, 2025
作者: Shimao Zhang, Zhejian Lai, Xiang Liu, Shuaijie She, Xiao Liu, Yeyun Gong, Shujian Huang, Jiajun Chen
cs.AI

摘要

多語言對齊是一種有效且具代表性的範式,用以增強大型語言模型(LLMs)的多語言能力,它將高資源語言的效能轉移至低資源語言。同時,一些關於語言特定神經元的研究揭示,LLMs在處理不同語言時,會選擇性地激活這些語言特定的神經元。這為更精細地分析和理解LLMs在多語言情境下的運作機制提供了新的視角。在本研究中,我們提出了一種新的、更細粒度的神經元識別算法,該算法能夠檢測語言神經元(包括語言特定神經元和語言相關神經元)以及語言無關神經元。此外,基於不同類型神經元的分佈特徵,我們將LLMs的多語言推理內部過程劃分為四個部分:(1)多語言理解,(2)共享語義空間推理,(3)多語言輸出空間轉換,以及(4)詞彙空間輸出。另外,我們系統地分析了對齊前後的模型,重點關注不同類型的神經元。我們還分析了「自發多語言對齊」現象。總體而言,我們的工作基於不同類型的神經元進行了全面的調查,為更好地理解LLMs的多語言對齊和多語言能力提供了實證結果和寶貴見解。
English
Multilingual Alignment is an effective and representative paradigm to enhance LLMs' multilingual capabilities, which transfers the capabilities from the high-resource languages to the low-resource languages. Meanwhile, some researches on language-specific neurons reveal that there are language-specific neurons that are selectively activated in LLMs when processing different languages. This provides a new perspective to analyze and understand LLMs' mechanisms more specifically in multilingual scenarios. In this work, we propose a new finer-grained neuron identification algorithm, which detects language neurons~(including language-specific neurons and language-related neurons) and language-agnostic neurons. Furthermore, based on the distributional characteristics of different types of neurons, we divide the LLMs' internal process for multilingual inference into four parts: (1) multilingual understanding, (2) shared semantic space reasoning, (3) multilingual output space transformation, and (4) vocabulary space outputting. Additionally, we systematically analyze the models before and after alignment with a focus on different types of neurons. We also analyze the phenomenon of ''Spontaneous Multilingual Alignment''. Overall, our work conducts a comprehensive investigation based on different types of neurons, providing empirical results and valuable insights for better understanding multilingual alignment and multilingual capabilities of LLMs.

Summary

AI-Generated Summary

PDF172May 28, 2025