可控記憶使用:在長期人機互動中平衡錨定效應與創新性
Controllable Memory Usage: Balancing Anchoring and Innovation in Long-Term Human-Agent Interaction
January 8, 2026
作者: Muzhao Tian, Zisu Huang, Xiaohua Wang, Jingwen Xu, Zhengkang Guo, Qi Qian, Yuanzhe Shen, Kaitao Song, Jiakang Yuan, Changze Lv, Xiaoqing Zheng
cs.AI
摘要
隨著基於大型語言模型的智慧體日益廣泛應用於長期互動場景,累積記憶能力對於實現個人化服務與維持風格一致性至關重要。然而,現有系統大多採用「全有或全無」的記憶使用模式:若完整納入過往互動資訊,可能導致「記憶錨定」現象,使智慧體受困於歷史對話軌跡;反之若完全排除記憶,則會造成重要互動歷史的未充分運用與遺失。我們的研究表明,智慧體對記憶的依賴程度可被建模為一個可顯式調控的維度。我們首先提出記憶依賴性的行為度量指標,用以量化過往互動對當前輸出的影響程度。接著推出可調控記憶智慧體框架SteeM,該框架允許使用者動態調節記憶依賴強度,範圍涵蓋激發創新的「全新啟動」模式,到嚴格遵循互動歷史的「高保真」模式。跨場景實驗表明,我們的方法在個性化人機協作中,能持續優於傳統提示法與剛性記憶遮蔽策略,實現更細膩且高效的控制效果。
English
As LLM-based agents are increasingly used in long-term interactions, cumulative memory is critical for enabling personalization and maintaining stylistic consistency. However, most existing systems adopt an ``all-or-nothing'' approach to memory usage: incorporating all relevant past information can lead to Memory Anchoring, where the agent is trapped by past interactions, while excluding memory entirely results in under-utilization and the loss of important interaction history. We show that an agent's reliance on memory can be modeled as an explicit and user-controllable dimension. We first introduce a behavioral metric of memory dependence to quantify the influence of past interactions on current outputs. We then propose Steerable Memory Agent, SteeM, a framework that allows users to dynamically regulate memory reliance, ranging from a fresh-start mode that promotes innovation to a high-fidelity mode that closely follows interaction history. Experiments across different scenarios demonstrate that our approach consistently outperforms conventional prompting and rigid memory masking strategies, yielding a more nuanced and effective control for personalized human-agent collaboration.