符號調整改善語言模型中的上下文學習
Symbol tuning improves in-context learning in language models
May 15, 2023
作者: Jerry Wei, Le Hou, Andrew Lampinen, Xiangning Chen, Da Huang, Yi Tay, Xinyun Chen, Yifeng Lu, Denny Zhou, Tengyu Ma, Quoc V. Le
cs.AI
摘要
我們提出符號微調 - 在上下文輸入-標籤對上微調語言模型,其中自然語言標籤(例如,“正面/負面情感”)被任意符號(例如,“foo/bar”)取代。符號微調利用這樣的直覺,即當模型無法使用指示或自然語言標籤來理解任務時,必須透過學習輸入-標籤映射來實現。
我們在 Flan-PaLM 模型上進行符號微調實驗,涵蓋高達 540B 參數,觀察到在各種設置下的好處。首先,符號微調提升了在看不見的上下文學習任務上的表現,對於指示不足或沒有自然語言標籤的提示更加強健。其次,經符號微調的模型在算法推理任務上表現更為強勁,在列表功能基準測試中表現提升高達 18.2%,在簡單圖靈概念基準測試中表現提升高達 15.3%。最後,經符號微調的模型在跟隨上下文中呈現的翻轉標籤方面有顯著改善,這意味著它們更能夠利用上下文信息來覆蓋先前的語義知識。
English
We present symbol tuning - finetuning language models on in-context
input-label pairs where natural language labels (e.g., "positive/negative
sentiment") are replaced with arbitrary symbols (e.g., "foo/bar"). Symbol
tuning leverages the intuition that when a model cannot use instructions or
natural language labels to figure out a task, it must instead do so by learning
the input-label mappings.
We experiment with symbol tuning across Flan-PaLM models up to 540B
parameters and observe benefits across various settings. First, symbol tuning
boosts performance on unseen in-context learning tasks and is much more robust
to underspecified prompts, such as those without instructions or without
natural language labels. Second, symbol-tuned models are much stronger at
algorithmic reasoning tasks, with up to 18.2% better performance on the List
Functions benchmark and up to 15.3% better performance on the Simple Turing
Concepts benchmark. Finally, symbol-tuned models show large improvements in
following flipped-labels presented in-context, meaning that they are more
capable of using in-context information to override prior semantic knowledge.