Light-A-Video:透過漸進式光融合實現無需訓練的視頻燈光調整
Light-A-Video: Training-free Video Relighting via Progressive Light Fusion
February 12, 2025
作者: Yujie Zhou, Jiazi Bu, Pengyang Ling, Pan Zhang, Tong Wu, Qidong Huang, Jinsong Li, Xiaoyi Dong, Yuhang Zang, Yuhang Cao, Anyi Rao, Jiaqi Wang, Li Niu
cs.AI
摘要
最近在影像燈光調整模型方面的進展,受到大規模數據集和預訓練擴散模型的推動,已經實現了一致的照明。然而,視頻燈光調整仍然滯後,主要是由於訓練成本過高以及多樣性和高質量視頻燈光調整數據集的稀缺。將影像燈光調整模型在逐幀應用會導致幾個問題:照明來源不一致和燈光調整外觀不一致,導致生成的視頻中出現閃爍。在這項工作中,我們提出了Light-A-Video,這是一種無需訓練的方法,用於實現時間上平滑的視頻燈光調整。Light-A-Video從影像燈光調整模型中借鑒,引入了兩個關鍵技術來增強照明一致性。首先,我們設計了一個一致燈光關注(CLA)模塊,通過增強自注意力層內的跨幀交互作用,以穩定生成背景照明來源。其次,利用光傳輸獨立性的物理原則,我們在源視頻外觀和燈光調整外觀之間應用線性混合,採用漸進式光融合(PLF)策略,以確保照明中的平滑時間過渡。實驗表明,Light-A-Video改善了燈光調整視頻的時間一致性,同時保持了圖像質量,確保了幀間一致的照明過渡。項目頁面:https://bujiazi.github.io/light-a-video.github.io/。
English
Recent advancements in image relighting models, driven by large-scale
datasets and pre-trained diffusion models, have enabled the imposition of
consistent lighting. However, video relighting still lags, primarily due to the
excessive training costs and the scarcity of diverse, high-quality video
relighting datasets. A simple application of image relighting models on a
frame-by-frame basis leads to several issues: lighting source inconsistency and
relighted appearance inconsistency, resulting in flickers in the generated
videos. In this work, we propose Light-A-Video, a training-free approach to
achieve temporally smooth video relighting. Adapted from image relighting
models, Light-A-Video introduces two key techniques to enhance lighting
consistency. First, we design a Consistent Light Attention (CLA) module, which
enhances cross-frame interactions within the self-attention layers to stabilize
the generation of the background lighting source. Second, leveraging the
physical principle of light transport independence, we apply linear blending
between the source video's appearance and the relighted appearance, using a
Progressive Light Fusion (PLF) strategy to ensure smooth temporal transitions
in illumination. Experiments show that Light-A-Video improves the temporal
consistency of relighted video while maintaining the image quality, ensuring
coherent lighting transitions across frames. Project page:
https://bujiazi.github.io/light-a-video.github.io/.Summary
AI-Generated Summary