系統級自然語言回饋
System-Level Natural Language Feedback
June 23, 2023
作者: Weizhe Yuan, Kyunghyun Cho, Jason Weston
cs.AI
摘要
自然語言(NL)反饋包含了豐富的用戶體驗信息。現有研究主要關注於實例級別方法,其中反饋用於完善特定示例,忽略了其在系統範圍應用上的潛力。本文提出了一個通用框架,用於開啟 NL 反饋的系統級應用。我們展示了如何利用反饋來形式化人在迴圈過程中的系統級設計決策,以便生成更好的模型。具體而言,這是通過:(i)任務的度量設計;和(ii)語言模型提示設計以完善模型回應。我們進行了兩個案例研究,以改進搜索查詢生成和對話回應生成,展示了系統級反饋的有效性。我們表明系統級反饋和實例級反饋的結合帶來進一步的收益,而人類編寫的實例級反饋比 GPT-3.5 編寫的反饋產生更具基礎性的改進,突顯了人類反饋在構建系統時的重要性。
English
Natural language (NL) feedback contains rich information about the user
experience. Existing studies focus on an instance-level approach, where
feedback is used to refine specific examples, disregarding its system-wide
application. This paper proposes a general framework for unlocking the
system-level use of NL feedback. We show how to use feedback to formalize
system-level design decisions in a human-in-the-loop-process -- in order to
produce better models. In particular this is done through: (i) metric design
for tasks; and (ii) language model prompt design for refining model responses.
We conduct two case studies of this approach for improving search query
generation and dialog response generation, demonstrating the effectiveness of
the use of system-level feedback. We show the combination of system-level
feedback and instance-level feedback brings further gains, and that human
written instance-level feedback results in more grounded refinements than
GPT-3.5 written ones, underlying the importance of human feedback for building
systems.