Edicho:實現野外環境下的一致性影像編輯
Edicho: Consistent Image Editing in the Wild
December 30, 2024
作者: Qingyan Bai, Hao Ouyang, Yinghao Xu, Qiuyu Wang, Ceyuan Yang, Ka Leong Cheng, Yujun Shen, Qifeng Chen
cs.AI
摘要
作為一項已驗證的需求,在真實場景圖像中實現一致性編輯仍是技術挑戰,這源於諸多不可控因素,如物體姿態、光照條件和拍攝環境。Edicho提出了一種基於擴散模型的免訓練解決方案,其核心設計原理是利用顯式圖像對應關係來指導編輯。具體而言,關鍵組件包括注意力操控模組和精心優化的無分類器引導(CFG)去噪策略,兩者均考量了預先估算的對應關係。這種推理階段的演算法具備即插即用特性,可兼容多數基於擴散的編輯方法(如ControlNet和BrushNet)。大量實驗結果證實Edicho在多種設定下實現跨圖像一致性編輯的有效性。我們將公開程式碼以促進後續研究。
English
As a verified need, consistent editing across in-the-wild images remains a
technical challenge arising from various unmanageable factors, like object
poses, lighting conditions, and photography environments. Edicho steps in with
a training-free solution based on diffusion models, featuring a fundamental
design principle of using explicit image correspondence to direct editing.
Specifically, the key components include an attention manipulation module and a
carefully refined classifier-free guidance (CFG) denoising strategy, both of
which take into account the pre-estimated correspondence. Such an
inference-time algorithm enjoys a plug-and-play nature and is compatible to
most diffusion-based editing methods, such as ControlNet and BrushNet.
Extensive results demonstrate the efficacy of Edicho in consistent cross-image
editing under diverse settings. We will release the code to facilitate future
studies.