Magistral
Magistral
June 12, 2025
作者: Mistral-AI, Abhinav Rastogi, Albert Q. Jiang, Andy Lo, Gabrielle Berrada, Guillaume Lample, Jason Rute, Joep Barmentlo, Karmesh Yadav, Kartik Khandelwal, Khyathi Raghavi Chandu, Léonard Blier, Lucile Saulnier, Matthieu Dinot, Maxime Darrin, Neha Gupta, Roman Soletskyi, Sagar Vaze, Teven Le Scao, Yihan Wang, Adam Yang, Alexander H. Liu, Alexandre Sablayrolles, Amélie Héliou, Amélie Martin, Andy Ehrenberg, Anmol Agarwal, Antoine Roux, Arthur Darcet, Arthur Mensch, Baptiste Bout, Baptiste Rozière, Baudouin De Monicault, Chris Bamford, Christian Wallenwein, Christophe Renaudin, Clémence Lanfranchi, Darius Dabert, Devon Mizelle, Diego de las Casas, Elliot Chane-Sane, Emilien Fugier, Emma Bou Hanna, Gauthier Delerce, Gauthier Guinet, Georgii Novikov, Guillaume Martin, Himanshu Jaju, Jan Ludziejewski, Jean-Hadrien Chabran, Jean-Malo Delignon, Joachim Studnia, Jonas Amar, Josselin Somerville Roberts, Julien Denize, Karan Saxena, Kush Jain, Lingxiao Zhao, Louis Martin, Luyu Gao, Lélio Renard Lavaud, Marie Pellat, Mathilde Guillaumin, Mathis Felardos, Maximilian Augustin, Mickaël Seznec, Nikhil Raghuraman, Olivier Duchenne, Patricia Wang, Patrick von Platen, Patryk Saffer, Paul Jacob, Paul Wambergue, Paula Kurylowicz, Pavankumar Reddy Muddireddy, Philomène Chagniot, Pierre Stock, Pravesh Agrawal, Romain Sauvestre, Rémi Delacourt, Sanchit Gandhi, Sandeep Subramanian, Shashwat Dalal, Siddharth Gandhi, Soham Ghosh, Srijan Mishra, Sumukh Aithal, Szymon Antoniak, Thibault Schueller, Thibaut Lavril, Thomas Robert, Thomas Wang, Timothée Lacroix, Valeriia Nemychnikova, Victor Paltz, Virgile Richard, Wen-Ding Li, William Marshall, Xuanyu Zhang, Yunhao Tang
cs.AI
摘要
我們推出Magistral,這是Mistral首個推理模型,以及我們自有的可擴展強化學習(RL)管道。我們不依賴於現有實現或從先前模型蒸餾出的RL軌跡,而是採用從零開始的方法,完全依賴於我們自己的模型和基礎設施。值得注意的是,我們展示了一個使我們能夠探索純RL訓練大型語言模型(LLMs)極限的技術棧,提出了一種簡單的方法來強制模型的推理語言,並證明僅基於文本數據的RL訓練能保持初始檢查點的大部分能力。我們發現,基於文本的RL訓練不僅保持甚至提升了多模態理解、指令遵循和函數調用能力。我們介紹了Magistral Medium,它是在Mistral Medium 3之上僅通過RL訓練專注於推理的模型,並開源了Magistral Small(Apache 2.0),該模型進一步包含了來自Magistral Medium的冷啟動數據。
English
We introduce Magistral, Mistral's first reasoning model and our own scalable
reinforcement learning (RL) pipeline. Instead of relying on existing
implementations and RL traces distilled from prior models, we follow a ground
up approach, relying solely on our own models and infrastructure. Notably, we
demonstrate a stack that enabled us to explore the limits of pure RL training
of LLMs, present a simple method to force the reasoning language of the model,
and show that RL on text data alone maintains most of the initial checkpoint's
capabilities. We find that RL on text maintains or improves multimodal
understanding, instruction following and function calling. We present Magistral
Medium, trained for reasoning on top of Mistral Medium 3 with RL alone, and we
open-source Magistral Small (Apache 2.0) which further includes cold-start data
from Magistral Medium.