基於置信度邊界加權偽標籤的Shuffle PatchMix增強方法,用於提升無源域適應性能
Shuffle PatchMix Augmentation with Confidence-Margin Weighted Pseudo-Labels for Enhanced Source-Free Domain Adaptation
May 30, 2025
作者: Prasanna Reddy Pulakurthi, Majid Rabbani, Jamison Heard, Sohail Dianat, Celso M. de Melo, Raghuveer Rao
cs.AI
摘要
本研究探討了無源域適應(Source-Free Domain Adaptation, SFDA)問題,即在無法取得源域數據的情況下,使模型適應目標域。為提升性能,我們引入了一種新的數據增強技術——混洗拼貼混合(Shuffle PatchMix, SPM),以及一種新穎的重新加權策略。SPM通過混洗並融合圖像塊來生成多樣且具挑戰性的增強數據,而重新加權策略則優先考慮可靠的偽標籤,以減輕標籤噪聲的影響。這些技術在如PACS等較小數據集上尤為有效,因為這些數據集更容易出現過擬合和偽標籤噪聲問題。我們在三大基準測試——PACS、VisDA-C和DomainNet-126上取得了領先的成果。特別是在PACS數據集上,單目標和多目標設置下的準確率分別提升了7.3%(從79.4%到86.7%)和7.2%,而在DomainNet-126和VisDA-C上則分別獲得了2.8%和0.7%的提升。這種結合先進數據增強與穩健偽標籤重新加權的方法,為SFDA設立了新的基準。相關代碼已公開於:https://github.com/PrasannaPulakurthi/SPM。
English
This work investigates Source-Free Domain Adaptation (SFDA), where a model
adapts to a target domain without access to source data. A new augmentation
technique, Shuffle PatchMix (SPM), and a novel reweighting strategy are
introduced to enhance performance. SPM shuffles and blends image patches to
generate diverse and challenging augmentations, while the reweighting strategy
prioritizes reliable pseudo-labels to mitigate label noise. These techniques
are particularly effective on smaller datasets like PACS, where overfitting and
pseudo-label noise pose greater risks. State-of-the-art results are achieved on
three major benchmarks: PACS, VisDA-C, and DomainNet-126. Notably, on PACS,
improvements of 7.3% (79.4% to 86.7%) and 7.2% are observed in single-target
and multi-target settings, respectively, while gains of 2.8% and 0.7% are
attained on DomainNet-126 and VisDA-C. This combination of advanced
augmentation and robust pseudo-label reweighting establishes a new benchmark
for SFDA. The code is available at: https://github.com/PrasannaPulakurthi/SPM