多步一致性模型
Multistep Consistency Models
March 11, 2024
作者: Jonathan Heek, Emiel Hoogeboom, Tim Salimans
cs.AI
摘要
擴散模型相對容易訓練,但需要許多步驟來生成樣本。一致性模型則難以訓練,但可以在單一步驟中生成樣本。
在本文中,我們提出多步一致性模型:將一致性模型(Song等,2023年)和TRACT(Berthelot等,2023年)統一起來,可以在一致性模型和擴散模型之間進行插值:在取樣速度和取樣質量之間取得平衡。具體來說,1步一致性模型是傳統的一致性模型,而我們展示了∞步一致性模型是擴散模型。
多步一致性模型在實踐中表現非常出色。通過將樣本預算從單一步驟增加到2-8步,我們可以更輕鬆地訓練出生成更高質量樣本的模型,同時保留了很大部分的取樣速度優勢。值得注意的結果是在8步中Imagenet 64上達到1.4的FID,以及在8步中Imagenet128上達到2.1的FID並使用一致性蒸餾。我們還展示了我們的方法可以擴展到文本到圖像擴散模型,生成的樣本非常接近原始模型的質量。
English
Diffusion models are relatively easy to train but require many steps to
generate samples. Consistency models are far more difficult to train, but
generate samples in a single step.
In this paper we propose Multistep Consistency Models: A unification between
Consistency Models (Song et al., 2023) and TRACT (Berthelot et al., 2023) that
can interpolate between a consistency model and a diffusion model: a trade-off
between sampling speed and sampling quality. Specifically, a 1-step consistency
model is a conventional consistency model whereas we show that a infty-step
consistency model is a diffusion model.
Multistep Consistency Models work really well in practice. By increasing the
sample budget from a single step to 2-8 steps, we can train models more easily
that generate higher quality samples, while retaining much of the sampling
speed benefits. Notable results are 1.4 FID on Imagenet 64 in 8 step and 2.1
FID on Imagenet128 in 8 steps with consistency distillation. We also show that
our method scales to a text-to-image diffusion model, generating samples that
are very close to the quality of the original model.Summary
AI-Generated Summary