並非所有正確答案都同等重要:為何蒸餾來源至關重要
Not All Correct Answers Are Equal: Why Your Distillation Source Matters
May 20, 2025
作者: Xiaoyu Tian, Yunjie Ji, Haotian Wang, Shuaiting Chen, Sitong Zhao, Yiping Peng, Han Zhao, Xiangang Li
cs.AI
摘要
蒸餾技術已成為提升開源語言模型推理能力的實用且有效的方法。在本研究中,我們通過從三個最先進的教師模型——AM-Thinking-v1、Qwen3-235B-A22B和DeepSeek-R1——收集共享語料庫中189萬個查詢的驗證輸出,進行了大規模的推理數據蒸餾實證研究。我們構建了三個平行數據集並分析了它們的分佈,發現AM-Thinking-v1蒸餾的數據展現出更大的詞元長度多樣性和更低的困惑度。在每個數據集上訓練的學生模型在包括AIME2024、AIME2025、MATH500和LiveCodeBench在內的推理基準上進行了評估。基於AM的模型始終表現最佳(例如,AIME2024上84.3分,AIME2025上72.2分,MATH500上98.4分,LiveCodeBench上65.9分),並展示了適應性輸出行為——對更難的任務生成更長的回應,對更簡單的任務生成更短的回應。這些發現凸顯了高質量、驗證過的推理軌跡的價值。我們發布了AM-Thinking-v1和Qwen3-235B-A22B蒸餾的數據集,以支持未來關於開放且高性能的推理導向語言模型的研究。這些數據集已在Hugging Face上公開提供:\href{https://huggingface.co/datasets/a-m-team/AM-Thinking-v1-Distilled{AM-Thinking-v1-Distilled}, https://huggingface.co/datasets/a-m-team/AM-Qwen3-Distilled{AM-Qwen3-Distilled}.}。
English
Distillation has emerged as a practical and effective approach to enhance the
reasoning capabilities of open-source language models. In this work, we conduct
a large-scale empirical study on reasoning data distillation by collecting
verified outputs from three state-of-the-art teacher models-AM-Thinking-v1,
Qwen3-235B-A22B, and DeepSeek-R1-on a shared corpus of 1.89 million queries. We
construct three parallel datasets and analyze their distributions, revealing
that AM-Thinking-v1-distilled data exhibits greater token length diversity and
lower perplexity. Student models trained on each dataset are evaluated on
reasoning benchmarks including AIME2024, AIME2025, MATH500, and LiveCodeBench.
The AM-based model consistently achieves the best performance (e.g., 84.3 on
AIME2024, 72.2 on AIME2025, 98.4 on MATH500, and 65.9 on LiveCodeBench) and
demonstrates adaptive output behavior-producing longer responses for harder
tasks and shorter ones for simpler tasks. These findings highlight the value of
high-quality, verified reasoning traces. We release the AM-Thinking-v1 and
Qwen3-235B-A22B distilled datasets to support future research on open and
high-performing reasoning-oriented language models. The datasets are publicly
available on Hugging FaceDatasets are available on Hugging Face:
\href{https://huggingface.co/datasets/a-m-team/AM-Thinking-v1-Distilled{AM-Thinking-v1-Distilled},
https://huggingface.co/datasets/a-m-team/AM-Qwen3-Distilled{AM-Qwen3-Distilled}.}.Summary
AI-Generated Summary