SyncDreamer:從單視角圖像生成多視角一致的圖像
SyncDreamer: Generating Multiview-consistent Images from a Single-view Image
September 7, 2023
作者: Yuan Liu, Cheng Lin, Zijiao Zeng, Xiaoxiao Long, Lingjie Liu, Taku Komura, Wenping Wang
cs.AI
摘要
在本文中,我們提出了一種新穎的擴散模型,稱為 SyncDreamer,可以從單視圖圖像生成多視圖一致的圖像。利用預訓練的大規模 2D 擴散模型,最近的 Zero123 工作展示了從物體的單視圖圖像生成合理的新視圖的能力。然而,對於生成的圖像保持幾何和顏色一致性仍然是一個挑戰。為了解決這個問題,我們提出了一個同步多視圖擴散模型,該模型建模了多視圖圖像的聯合概率分佈,從而實現在單個反向過程中生成多視圖一致的圖像。SyncDreamer 通過一個 3D 感知特徵注意機制,在反向過程的每一步同步所有生成圖像的中間狀態,相關聯不同視圖之間的對應特徵。實驗表明,SyncDreamer 生成的圖像在不同視圖之間具有高度一致性,因此非常適用於各種 3D 生成任務,如新視圖合成、文本到 3D 和圖像到 3D。
English
In this paper, we present a novel diffusion model called that generates
multiview-consistent images from a single-view image. Using pretrained
large-scale 2D diffusion models, recent work Zero123 demonstrates the ability
to generate plausible novel views from a single-view image of an object.
However, maintaining consistency in geometry and colors for the generated
images remains a challenge. To address this issue, we propose a synchronized
multiview diffusion model that models the joint probability distribution of
multiview images, enabling the generation of multiview-consistent images in a
single reverse process. SyncDreamer synchronizes the intermediate states of all
the generated images at every step of the reverse process through a 3D-aware
feature attention mechanism that correlates the corresponding features across
different views. Experiments show that SyncDreamer generates images with high
consistency across different views, thus making it well-suited for various 3D
generation tasks such as novel-view-synthesis, text-to-3D, and image-to-3D.