JL1-CD:遙感變化檢測的新基準與穩健的多教師知識蒸餾框架
JL1-CD: A New Benchmark for Remote Sensing Change Detection and a Robust Multi-Teacher Knowledge Distillation Framework
February 19, 2025
作者: Ziyuan Liu, Ruifei Zhu, Long Gao, Yuanxiu Zhou, Jingyu Ma, Yuantao Gu
cs.AI
摘要
深度學習在遙感影像變化檢測(CD)領域已取得顯著成功,但仍面臨兩大挑戰:一是缺乏亞米級、全面性的開源CD數據集,二是在變化區域多樣的影像中難以實現一致且令人滿意的檢測結果。為解決這些問題,我們引入了JL1-CD數據集,該數據集包含5000對512×512像素的影像,分辨率為0.5至0.75米。此外,我們提出了一種用於CD的多教師知識蒸餾(MTKD)框架。在JL1-CD和SYSU-CD數據集上的實驗結果表明,MTKD框架顯著提升了不同網絡架構和參數規模的CD模型性能,達到了新的最佳水平。代碼已公開於https://github.com/circleLZY/MTKD-CD。
English
Deep learning has achieved significant success in the field of remote sensing
image change detection (CD), yet two major challenges remain: the scarcity of
sub-meter, all-inclusive open-source CD datasets, and the difficulty of
achieving consistent and satisfactory detection results across images with
varying change areas. To address these issues, we introduce the JL1-CD dataset,
which contains 5,000 pairs of 512 x 512 pixel images with a resolution of 0.5
to 0.75 meters. Additionally, we propose a multi-teacher knowledge distillation
(MTKD) framework for CD. Experimental results on the JL1-CD and SYSU-CD
datasets demonstrate that the MTKD framework significantly improves the
performance of CD models with various network architectures and parameter
sizes, achieving new state-of-the-art results. The code is available at
https://github.com/circleLZY/MTKD-CD.Summary
AI-Generated Summary