BRAINS:用于阿尔茨海默病检测与监测的检索增强系统
BRAINS: A Retrieval-Augmented System for Alzheimer's Detection and Monitoring
November 4, 2025
作者: Rajan Das Gupta, Md Kishor Morol, Nafiz Fahad, Md Tanzib Hosain, Sumaya Binte Zilani Choya, Md Jakir Hossen
cs.AI
摘要
随着阿尔茨海默病(AD)的全球负担持续加重,早期精准检测变得愈发关键——在先进诊断工具获取受限的地区尤其如此。我们提出BRAINS(基于生物医学检索增强智能的神经退行性疾病筛查系统)应对这一挑战。该创新系统利用大语言模型(LLMs)强大的推理能力进行阿尔茨海默病的检测与监测。BRAINS采用双模块架构:认知诊断模块与案例检索模块。诊断模块运用经认知及神经影像数据集(包括MMSE量表、CDR评分和脑容量指标)微调的LLMs,对阿尔茨海默病风险进行结构化评估。与此同时,案例检索模块将患者档案编码为潜在表征,并从经过筛选的知识库中检索相似病例。这些辅助案例通过案例融合层与输入档案进行整合,以增强上下文理解。最终结合临床提示词对融合后的表征进行推理分析。真实世界数据集上的评估表明,BRAINS在疾病严重程度分类和认知衰退早期迹象识别方面成效显著。该系统不仅展现出作为可扩展、可解释的早期阿尔茨海默病检测辅助工具的强劲潜力,更为该领域的未来应用带来希望。
English
As the global burden of Alzheimer's disease (AD) continues to grow, early and
accurate detection has become increasingly critical, especially in regions with
limited access to advanced diagnostic tools. We propose BRAINS (Biomedical
Retrieval-Augmented Intelligence for Neurodegeneration Screening) to address
this challenge. This novel system harnesses the powerful reasoning capabilities
of Large Language Models (LLMs) for Alzheimer's detection and monitoring.
BRAINS features a dual-module architecture: a cognitive diagnostic module and a
case-retrieval module. The Diagnostic Module utilizes LLMs fine-tuned on
cognitive and neuroimaging datasets -- including MMSE, CDR scores, and brain
volume metrics -- to perform structured assessments of Alzheimer's risk.
Meanwhile, the Case Retrieval Module encodes patient profiles into latent
representations and retrieves similar cases from a curated knowledge base.
These auxiliary cases are fused with the input profile via a Case Fusion Layer
to enhance contextual understanding. The combined representation is then
processed with clinical prompts for inference. Evaluations on real-world
datasets demonstrate BRAINS effectiveness in classifying disease severity and
identifying early signs of cognitive decline. This system not only shows strong
potential as an assistive tool for scalable, explainable, and early-stage
Alzheimer's disease detection, but also offers hope for future applications in
the field.