ChatPaper.aiChatPaper

LexC-Gen:利用大型語言模型和雙語詞典為極低資源語言生成數據

LexC-Gen: Generating Data for Extremely Low-Resource Languages with Large Language Models and Bilingual Lexicons

February 21, 2024
作者: Zheng-Xin Yong, Cristina Menghini, Stephen H. Bach
cs.AI

摘要

在低資源語言中的數據稀缺問題可以通過使用雙語詞典,從高資源語言中標記的任務數據進行詞對詞翻譯來解決。然而,雙語詞典通常與任務數據的詞彙重疊有限,導致翻譯覆蓋率和詞典利用率不佳。我們提出了一種稱為詞典條件數據生成(LexC-Gen)的方法,可以大規模生成低資源語言的分類任務數據。具體來說,LexC-Gen首先使用雙語詞典中的高資源語言詞彙生成與詞典相容的任務數據,然後通過詞彙翻譯將其翻譯為低資源語言。在17種極低資源語言中,LexC-Gen生成的數據與專家翻譯的標金數據相競爭,並在情感分析和主題分類任務上分別平均提高了5.6和8.9個分數,優於現有基於詞典的詞彙翻譯方法。我們表明,以雙語詞典為條件是LexC-Gen的關鍵組成部分。LexC-Gen也很實用,僅需一個單GPU即可大規模生成數據。它與開放存取的LLMs配合良好,成本僅為基於GPT4的多語種數據生成的五分之一。
English
Data scarcity in low-resource languages can be addressed with word-to-word translations from labeled task data in high-resource languages using bilingual lexicons. However, bilingual lexicons often have limited lexical overlap with task data, which results in poor translation coverage and lexicon utilization. We propose lexicon-conditioned data generation (LexC-Gen), a method that generates low-resource-language classification task data at scale. Specifically, LexC-Gen first uses high-resource-language words from bilingual lexicons to generate lexicon-compatible task data, and then it translates them into low-resource languages with bilingual lexicons via word translation. Across 17 extremely low-resource languages, LexC-Gen generated data is competitive with expert-translated gold data, and yields on average 5.6 and 8.9 points improvement over existing lexicon-based word translation methods on sentiment analysis and topic classification tasks respectively. We show that conditioning on bilingual lexicons is the key component of LexC-Gen. LexC-Gen is also practical -- it only needs a single GPU to generate data at scale. It works well with open-access LLMs, and its cost is one-fifth of the cost of GPT4-based multilingual data generation.
PDF122December 15, 2024