神經安琪洛:高保真度神經表面重建
Neuralangelo: High-Fidelity Neural Surface Reconstruction
June 5, 2023
作者: Zhaoshuo Li, Thomas Müller, Alex Evans, Russell H. Taylor, Mathias Unberath, Ming-Yu Liu, Chen-Hsuan Lin
cs.AI
摘要
神經表面重建已被證明在通過基於圖像的神經渲染恢復密集3D表面方面非常強大。然而,目前的方法在恢復真實場景的細節結構方面存在困難。為解決此問題,我們提出了Neuralangelo,它結合了多分辨率3D哈希網格的表示能力與神經表面渲染。我們方法的兩個關鍵要素包括:(1)用於計算高階導數的數值梯度作為平滑操作,以及(2)在控制不同細節級別的哈希網格上進行由粗到細的優化。即使沒有輔助輸入,如深度,Neuralangelo也能從多視圖圖像中有效地恢復密集3D表面結構,其保真度顯著超越先前的方法,實現從RGB視頻捕獲中對大規模場景進行詳細重建。
English
Neural surface reconstruction has been shown to be powerful for recovering
dense 3D surfaces via image-based neural rendering. However, current methods
struggle to recover detailed structures of real-world scenes. To address the
issue, we present Neuralangelo, which combines the representation power of
multi-resolution 3D hash grids with neural surface rendering. Two key
ingredients enable our approach: (1) numerical gradients for computing
higher-order derivatives as a smoothing operation and (2) coarse-to-fine
optimization on the hash grids controlling different levels of details. Even
without auxiliary inputs such as depth, Neuralangelo can effectively recover
dense 3D surface structures from multi-view images with fidelity significantly
surpassing previous methods, enabling detailed large-scale scene reconstruction
from RGB video captures.