ChatPaper.aiChatPaper

InternLM-XComposer2.5-Reward:一個簡單但有效的多模態獎勵模型

InternLM-XComposer2.5-Reward: A Simple Yet Effective Multi-Modal Reward Model

January 21, 2025
作者: Yuhang Zang, Xiaoyi Dong, Pan Zhang, Yuhang Cao, Ziyu Liu, Shengyuan Ding, Shenxi Wu, Yubo Ma, Haodong Duan, Wenwei Zhang, Kai Chen, Dahua Lin, Jiaqi Wang
cs.AI

摘要

儘管大型視覺語言模型(LVLMs)在視覺理解方面表現出色,但偶爾會生成不正確的輸出。儘管利用強化學習或測試時縮放的獎勵模型(RMs)有望提高生成質量,但仍存在一個關鍵差距:LVLMs的多模態RMs公開可用性有限,專有模型的實施細節通常不清楚。我們通過InternLM-XComposer2.5-Reward(IXC-2.5-Reward)來彌補這一差距,這是一個簡單而有效的多模態獎勵模型,可使LVLMs與人類偏好保持一致。為確保IXC-2.5-Reward的穩健性和多功能性,我們建立了一個高質量的多模態偏好語料庫,跨越文本、圖像和視頻輸入,涵蓋指令遵循、一般理解、文本豐富文件、數學推理和視頻理解等多個領域。IXC-2.5-Reward在最新的多模態獎勵模型基準上取得了出色的結果,並在僅文本獎勵模型基準上表現出競爭力。我們進一步展示了IXC-2.5-Reward的三個關鍵應用:(1)為RL訓練提供監督信號。我們將IXC-2.5-Reward與Proximal Policy Optimization(PPO)結合,產生IXC-2.5-Chat,在指令遵循和多模態開放式對話中展示出持續改進;(2)從候選回應中選擇最佳回應以進行測試時縮放;以及(3)從現有圖像和視頻指令調整訓練數據中過濾異常或噪聲樣本。為確保可重現性並促進進一步研究,我們已在https://github.com/InternLM/InternLM-XComposer 上開源了所有模型權重和訓練配方。
English
Despite the promising performance of Large Vision Language Models (LVLMs) in visual understanding, they occasionally generate incorrect outputs. While reward models (RMs) with reinforcement learning or test-time scaling offer the potential for improving generation quality, a critical gap remains: publicly available multi-modal RMs for LVLMs are scarce, and the implementation details of proprietary models are often unclear. We bridge this gap with InternLM-XComposer2.5-Reward (IXC-2.5-Reward), a simple yet effective multi-modal reward model that aligns LVLMs with human preferences. To ensure the robustness and versatility of IXC-2.5-Reward, we set up a high-quality multi-modal preference corpus spanning text, image, and video inputs across diverse domains, such as instruction following, general understanding, text-rich documents, mathematical reasoning, and video understanding. IXC-2.5-Reward achieves excellent results on the latest multi-modal reward model benchmark and shows competitive performance on text-only reward model benchmarks. We further demonstrate three key applications of IXC-2.5-Reward: (1) Providing a supervisory signal for RL training. We integrate IXC-2.5-Reward with Proximal Policy Optimization (PPO) yields IXC-2.5-Chat, which shows consistent improvements in instruction following and multi-modal open-ended dialogue; (2) Selecting the best response from candidate responses for test-time scaling; and (3) Filtering outlier or noisy samples from existing image and video instruction tuning training data. To ensure reproducibility and facilitate further research, we have open-sourced all model weights and training recipes at https://github.com/InternLM/InternLM-XComposer

Summary

AI-Generated Summary

PDF463January 22, 2025