通过先决条件学习,虚构的合成数据可以提高LLM事实性。
Fictitious Synthetic Data Can Improve LLM Factuality via Prerequisite Learning
October 25, 2024
作者: Yujian Liu, Shiyu Chang, Tommi Jaakkola, Yang Zhang
cs.AI
摘要
最近的研究发现,LLM幻觉的一个加剧因素是预训练和微调之间的知识不一致,即不熟悉的微调数据会误导LLM制造出似是而非的错误输出。在本文中,我们提出了一种名为Prereq-Tune的新颖微调策略,以解决这种知识不一致性并减少幻觉。从根本上讲,Prereq-Tune将技能和知识的学习分离,使模型仅学习任务技能而不受知识不一致性的影响。为实现这一目标,Prereq-Tune引入了一个额外的先决学习阶段,用于学习SFT所需的知识,从而使后续的SFT仅专注于任务技能。Prereq-Tune还可以与虚构的合成数据结合,以增强LLM输出与其内部知识的联系。实验证明,Prereq-Tune在提高LLM在短问答和长篇生成任务中的事实性方面优于现有基线。它还为LLM中的知识受控生成开辟了新的可能性。我们的代码可在https://github.com/UCSB-NLP-Chang/Prereq_tune.git找到。
English
Recent studies have identified one aggravating factor of LLM hallucinations
as the knowledge inconsistency between pre-training and fine-tuning, where
unfamiliar fine-tuning data mislead the LLM to fabricate plausible but wrong
outputs. In this paper, we propose a novel fine-tuning strategy called
Prereq-Tune to address this knowledge inconsistency and reduce hallucinations.
Fundamentally, Prereq-Tune disentangles the learning of skills and knowledge,
so the model learns only the task skills without being impacted by the
knowledge inconsistency. To achieve this, Prereq-Tune introduces an additional
prerequisite learning stage to learn the necessary knowledge for SFT, allowing
subsequent SFT to focus only on task skills. Prereq-Tune can also be combined
with fictitious synthetic data to enhance the grounding of LLM outputs to their
internal knowledge. Experiments show that Prereq-Tune outperforms existing
baselines in improving LLM's factuality across short QA and long-form
generation tasks. It also opens new possibilities for knowledge-controlled
generation in LLMs. Our code is available at
https://github.com/UCSB-NLP-Chang/Prereq_tune.git.Summary
AI-Generated Summary