CauScale:大规模神经因果发现
CauScale: Neural Causal Discovery at Scale
February 9, 2026
作者: Bo Peng, Sirui Chen, Jiaguo Tian, Yu Qiao, Chaochao Lu
cs.AI
摘要
因果发现对于推动科学AI与数据分析等数据驱动领域的发展至关重要,但现有方法在扩展至大规模图结构时面临显著的时间与空间效率瓶颈。为解决这一挑战,我们提出CauScale——一种专为高效因果发现设计的神经架构,可将推理规模扩展至包含1000个节点的图结构。CauScale通过降维单元压缩数据嵌入提升时间效率,并采用绑定注意力权重避免维护轴向特定注意力图谱以优化空间效率。为保持高精度因果发现能力,该架构采用双流设计:数据流从高维观测值中提取关系证据,图流则整合统计图先验并保留关键结构信号。在训练阶段,CauScale成功扩展至500节点图结构,而现有方法因空间限制无法实现。在不同图规模与因果机制的测试数据中,CauScale在分布内数据上达到99.6%的平均精度(mAP),分布外数据上达到84.4%,同时推理速度较现有方法提升4至13000倍。项目页面详见https://github.com/OpenCausaLab/CauScale。
English
Causal discovery is essential for advancing data-driven fields such as scientific AI and data analysis, yet existing approaches face significant time- and space-efficiency bottlenecks when scaling to large graphs. To address this challenge, we present CauScale, a neural architecture designed for efficient causal discovery that scales inference to graphs with up to 1000 nodes. CauScale improves time efficiency via a reduction unit that compresses data embeddings and improves space efficiency by adopting tied attention weights to avoid maintaining axis-specific attention maps. To keep high causal discovery accuracy, CauScale adopts a two-stream design: a data stream extracts relational evidence from high-dimensional observations, while a graph stream integrates statistical graph priors and preserves key structural signals. CauScale successfully scales to 500-node graphs during training, where prior work fails due to space limitations. Across testing data with varying graph scales and causal mechanisms, CauScale achieves 99.6% mAP on in-distribution data and 84.4% on out-of-distribution data, while delivering 4-13,000 times inference speedups over prior methods. Our project page is at https://github.com/OpenCausaLab/CauScale.