DreamScene360:使用全景高斯飞溅进行无约束文本到3D场景生成
DreamScene360: Unconstrained Text-to-3D Scene Generation with Panoramic Gaussian Splatting
April 10, 2024
作者: Shijie Zhou, Zhiwen Fan, Dejia Xu, Haoran Chang, Pradyumna Chari, Tejas Bharadwaj, Suya You, Zhangyang Wang, Achuta Kadambi
cs.AI
摘要
对虚拟现实应用的需求不断增加,凸显了打造沉浸式3D资产的重要性。我们提出了一种文本到3D 360°场景生成管线,可在几分钟内为野外环境创建全面的360°场景。我们的方法利用2D扩散模型的生成能力和即时自我完善,创建高质量且全局连贯的全景图像。该图像充当初步的“平面”(2D)场景表示。随后,通过斑点技术将其转换为3D高斯模型,以实现实时探索。为了生成一致的3D几何结构,我们的管线通过将2D单眼深度对齐为全局优化的点云,构建空间连贯结构。这个点云作为3D高斯模型的质心的初始状态。为了解决单视角输入固有的不可见问题,我们对合成和输入相机视图都施加语义和几何约束作为正则化。这些约束引导高斯模型的优化,有助于重建看不见的区域。总之,我们的方法提供了360°视角下的全局一致的3D场景,比现有技术提供了更加增强的沉浸体验。项目网站:http://dreamscene360.github.io/
English
The increasing demand for virtual reality applications has highlighted the
significance of crafting immersive 3D assets. We present a text-to-3D
360^{circ} scene generation pipeline that facilitates the creation of
comprehensive 360^{circ} scenes for in-the-wild environments in a matter of
minutes. Our approach utilizes the generative power of a 2D diffusion model and
prompt self-refinement to create a high-quality and globally coherent panoramic
image. This image acts as a preliminary "flat" (2D) scene representation.
Subsequently, it is lifted into 3D Gaussians, employing splatting techniques to
enable real-time exploration. To produce consistent 3D geometry, our pipeline
constructs a spatially coherent structure by aligning the 2D monocular depth
into a globally optimized point cloud. This point cloud serves as the initial
state for the centroids of 3D Gaussians. In order to address invisible issues
inherent in single-view inputs, we impose semantic and geometric constraints on
both synthesized and input camera views as regularizations. These guide the
optimization of Gaussians, aiding in the reconstruction of unseen regions. In
summary, our method offers a globally consistent 3D scene within a
360^{circ} perspective, providing an enhanced immersive experience over
existing techniques. Project website at: http://dreamscene360.github.io/Summary
AI-Generated Summary