UniTEX:面向三维形状的通用高保真生成纹理技术
UniTEX: Universal High Fidelity Generative Texturing for 3D Shapes
May 29, 2025
作者: Yixun Liang, Kunming Luo, Xiao Chen, Rui Chen, Hongyu Yan, Weiyu Li, Jiarui Liu, Ping Tan
cs.AI
摘要
我们提出了UniTEX,一种新颖的两阶段3D纹理生成框架,旨在为3D资产创建高质量且一致的纹理。现有方法主要依赖于在将生成的多视角图像重新投影到3D形状后,通过基于UV的修复来细化纹理,这引入了与拓扑模糊性相关的挑战。为解决这一问题,我们提议绕过UV映射的限制,直接在统一的3D功能空间中操作。具体而言,我们首先提出通过纹理函数(TFs)将纹理生成提升至3D空间——这是一种连续的体积表示,仅基于表面接近度将任意3D点映射到纹理值,与网格拓扑无关。随后,我们提出使用基于Transformer的大规模纹理模型(LTM)直接从图像和几何输入预测这些TFs。为进一步提升纹理质量并利用强大的2D先验知识,我们开发了一种基于LoRA的高级策略,高效地适应大规模扩散Transformer(DiTs),用于高质量的多视角纹理合成,作为我们的第一阶段。大量实验表明,UniTEX在视觉质量和纹理完整性方面均优于现有方法,为自动化3D纹理生成提供了一个可推广且可扩展的解决方案。代码将发布于:https://github.com/YixunLiang/UniTEX。
English
We present UniTEX, a novel two-stage 3D texture generation framework to
create high-quality, consistent textures for 3D assets. Existing approaches
predominantly rely on UV-based inpainting to refine textures after reprojecting
the generated multi-view images onto the 3D shapes, which introduces challenges
related to topological ambiguity. To address this, we propose to bypass the
limitations of UV mapping by operating directly in a unified 3D functional
space. Specifically, we first propose that lifts texture generation into 3D
space via Texture Functions (TFs)--a continuous, volumetric representation that
maps any 3D point to a texture value based solely on surface proximity,
independent of mesh topology. Then, we propose to predict these TFs directly
from images and geometry inputs using a transformer-based Large Texturing Model
(LTM). To further enhance texture quality and leverage powerful 2D priors, we
develop an advanced LoRA-based strategy for efficiently adapting large-scale
Diffusion Transformers (DiTs) for high-quality multi-view texture synthesis as
our first stage. Extensive experiments demonstrate that UniTEX achieves
superior visual quality and texture integrity compared to existing approaches,
offering a generalizable and scalable solution for automated 3D texture
generation. Code will available in: https://github.com/YixunLiang/UniTEX.Summary
AI-Generated Summary