CatLIP:在Web规模的图像文本数据上进行2.7倍更快的预训练,实现与CLIP相当的视觉识别准确性
CatLIP: CLIP-level Visual Recognition Accuracy with 2.7x Faster Pre-training on Web-scale Image-Text Data
April 24, 2024
作者: Sachin Mehta, Maxwell Horton, Fartash Faghri, Mohammad Hossein Sekhavat, Mahyar Najibi, Mehrdad Farajtabar, Oncel Tuzel, Mohammad Rastegari
cs.AI
摘要
对比学习已成为通过对齐图像和文本嵌入来学习有效视觉表示的一种革命性方法。然而,在图像和文本对之间的对比损失中进行成对相似度计算会带来计算挑战。本文提出了一种新颖的基于网络规模图像文本数据的弱监督预训练视觉模型的方法。所提出的方法将图像文本数据上的预训练重新构建为一个分类任务。因此,它消除了在对比损失中进行成对相似度计算的需要,相较于在网络规模数据上进行对比学习,实现了训练速度显著提升2.7倍。通过广泛的实验涵盖不同的视觉任务,包括检测和分割,我们证明了所提出的方法保持了高表示质量。我们的源代码以及预训练模型权重和训练配方可在https://github.com/apple/corenet 上获得。
English
Contrastive learning has emerged as a transformative method for learning
effective visual representations through the alignment of image and text
embeddings. However, pairwise similarity computation in contrastive loss
between image and text pairs poses computational challenges. This paper
presents a novel weakly supervised pre-training of vision models on web-scale
image-text data. The proposed method reframes pre-training on image-text data
as a classification task. Consequently, it eliminates the need for pairwise
similarity computations in contrastive loss, achieving a remarkable 2.7times
acceleration in training speed compared to contrastive learning on web-scale
data. Through extensive experiments spanning diverse vision tasks, including
detection and segmentation, we demonstrate that the proposed method maintains
high representation quality. Our source code along with pre-trained model
weights and training recipes is available at
https://github.com/apple/corenet.