内省提示:用于上下文决策的大型语言模型
Introspective Tips: Large Language Model for In-Context Decision Making
May 19, 2023
作者: Liting Chen, Lu Wang, Hang Dong, Yali Du, Jie Yan, Fangkai Yang, Shuang Li, Pu Zhao, Si Qin, Saravan Rajmohan, Qingwei Lin, Dongmei Zhang
cs.AI
摘要
大型语言模型(LLMs)的出现显著影响了自然语言处理,在各种任务中展示出卓越的结果。在这项研究中,我们采用“内省提示”来帮助LLMs自我优化决策。通过内省地检查轨迹,LLM通过生成简洁而有价值的提示来完善其策略。我们的方法通过考虑三种重要情景来增强代理的性能,即从代理的过去经验中学习,整合专家演示,以及在不同游戏中进行泛化。重要的是,我们实现这些改进而无需微调LLM参数;相反,我们调整提示以从上述三种情况中泛化见解。我们的框架不仅支持而且强调了在上下文决策中使用LLM的优势。在TextWorld中涉及超过100个游戏的实验展示了我们方法的卓越性能。
English
The emergence of large language models (LLMs) has substantially influenced
natural language processing, demonstrating exceptional results across various
tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in
self-optimizing their decision-making. By introspectively examining
trajectories, LLM refines its policy by generating succinct and valuable tips.
Our method enhances the agent's performance in both few-shot and zero-shot
learning situations by considering three essential scenarios: learning from the
agent's past experiences, integrating expert demonstrations, and generalizing
across diverse games. Importantly, we accomplish these improvements without
fine-tuning the LLM parameters; rather, we adjust the prompt to generalize
insights from the three aforementioned situations. Our framework not only
supports but also emphasizes the advantage of employing LLM in in-contxt
decision-making. Experiments involving over 100 games in TextWorld illustrate
the superior performance of our approach.