Any6D:新型物体的无模型6D姿态估计
Any6D: Model-free 6D Pose Estimation of Novel Objects
March 24, 2025
作者: Taeyeop Lee, Bowen Wen, Minjun Kang, Gyuree Kang, In So Kweon, Kuk-Jin Yoon
cs.AI
摘要
我们推出Any6D,一种无需模型的六维物体姿态估计框架,仅需单张RGB-D锚点图像即可估算新场景中未知物体的六维姿态及尺寸。与依赖纹理化三维模型或多视角的现有方法不同,Any6D通过联合物体对齐过程,强化了二维到三维的对齐及度量尺度估计,从而提升了姿态估计的精确度。我们的方法融合了渲染-比较策略,以生成并优化姿态假设,确保在遮挡、非重叠视角、多样光照条件及大范围跨环境变化等复杂场景下仍能保持稳健性能。我们在五个具有挑战性的数据集——REAL275、Toyota-Light、HO3D、YCBINEOAT和LM-O上进行了评估,结果表明,Any6D在新型物体姿态估计方面显著超越了当前最先进的方法,展现了其卓越效能。项目页面:https://taeyeop.com/any6d
English
We introduce Any6D, a model-free framework for 6D object pose estimation that
requires only a single RGB-D anchor image to estimate both the 6D pose and size
of unknown objects in novel scenes. Unlike existing methods that rely on
textured 3D models or multiple viewpoints, Any6D leverages a joint object
alignment process to enhance 2D-3D alignment and metric scale estimation for
improved pose accuracy. Our approach integrates a render-and-compare strategy
to generate and refine pose hypotheses, enabling robust performance in
scenarios with occlusions, non-overlapping views, diverse lighting conditions,
and large cross-environment variations. We evaluate our method on five
challenging datasets: REAL275, Toyota-Light, HO3D, YCBINEOAT, and LM-O,
demonstrating its effectiveness in significantly outperforming state-of-the-art
methods for novel object pose estimation. Project page:
https://taeyeop.com/any6dSummary
AI-Generated Summary