DoTA-RAG:动态思维聚合检索增强生成
DoTA-RAG: Dynamic of Thought Aggregation RAG
June 14, 2025
作者: Saksorn Ruangtanusak, Natthapath Rungseesiripak, Peerawat Rojratchadakorn, Monthol Charattrakool, Natapong Nitarach
cs.AI
摘要
本文介绍了DoTA-RAG(动态思维聚合检索增强生成系统),这是一个针对高吞吐量、大规模网络知识索引优化的检索增强生成系统。传统的RAG管道在处理海量、多样化数据集时,常面临高延迟和准确性受限的问题。DoTA-RAG通过三阶段管道应对这些挑战:查询重写、动态路由至专业子索引,以及多阶段检索与排序。我们进一步通过评估并选择更优的嵌入模型,对FineWeb-10BT大规模语料库进行重新嵌入,从而提升了检索效果。此外,我们利用DataMorgana框架生成了涵盖广泛WebOrganizer主题和格式的500个问答数据集,丰富了测试资源。DoTA-RAG将答案正确率从基线(使用LiveRAG预构建向量存储)的0.752提升至1.478,同时保持了低延迟,并在Live Challenge Day上取得了0.929的正确率。这些成果彰显了DoTA-RAG在需要快速、可靠访问大规模动态知识源领域中的实际部署潜力。
English
In this paper, we introduce DoTA-RAG (Dynamic-of-Thought Aggregation RAG), a
retrieval-augmented generation system optimized for high-throughput,
large-scale web knowledge indexes. Traditional RAG pipelines often suffer from
high latency and limited accuracy over massive, diverse datasets. DoTA-RAG
addresses these challenges with a three-stage pipeline: query rewriting,
dynamic routing to specialized sub-indexes, and multi-stage retrieval and
ranking. We further enhance retrieval by evaluating and selecting a superior
embedding model, re-embedding the large FineWeb-10BT corpus. Moreover, we
create a diverse Q&A dataset of 500 questions generated via the DataMorgana
setup across a broad range of WebOrganizer topics and formats. DoTA-RAG
improves the answer correctness score from 0.752 (baseline, using LiveRAG
pre-built vector store) to 1.478 while maintaining low latency, and it achieves
a 0.929 correctness score on the Live Challenge Day. These results highlight
DoTA-RAG's potential for practical deployment in domains requiring fast,
reliable access to large and evolving knowledge sources.