GLIMMER:通用后交互记忆重排序器
GLIMMER: generalized late-interaction memory reranker
June 17, 2023
作者: Michiel de Jong, Yury Zemlyanskiy, Nicholas FitzGerald, Sumit Sanghai, William W. Cohen, Joshua Ainslie
cs.AI
摘要
记忆增强是一种强大的方法,可以高效地将外部信息整合到语言模型中,但相对于检索文本会导致性能下降。最近的研究引入了LUMEN,这是一种记忆检索混合方法,部分预先计算记忆,并通过较小的实时编码器实时更新记忆表示。
我们提出了GLIMMER,通过以下方式改进这种方法:1)利用对强大记忆表示的免费访问,通过在记忆之上应用浅层重新排序器,大幅提高检索质量,成本较低;2)结合多任务训练,学习通用和更高质量的记忆和实时编码器。GLIMMER在KILT知识密集型任务基准测试中相比LUMEN和FiD,以更快的速度取得了性能上的显著增益。
English
Memory-augmentation is a powerful approach for efficiently incorporating
external information into language models, but leads to reduced performance
relative to retrieving text. Recent work introduced LUMEN, a memory-retrieval
hybrid that partially pre-computes memory and updates memory representations on
the fly with a smaller live encoder.
We propose GLIMMER, which improves on this approach through 1) exploiting
free access to the powerful memory representations by applying a shallow
reranker on top of memory to drastically improve retrieval quality at low cost,
and 2) incorporating multi-task training to learn a general and higher quality
memory and live encoder. GLIMMER achieves strong gains in performance at faster
speeds compared to LUMEN and FiD on the KILT benchmark of knowledge-intensive
tasks.