Auto-SLURP:智能个人助手中多智能体框架评估的基准数据集
Auto-SLURP: A Benchmark Dataset for Evaluating Multi-Agent Frameworks in Smart Personal Assistant
April 25, 2025
作者: Lei Shen, Xiaoyu Shen
cs.AI
摘要
近年来,依托于大语言模型(LLMs)的多智能体框架发展迅速。尽管取得了这些进展,专门用于评估其性能的基准数据集仍然显著缺失。为填补这一空白,我们推出了Auto-SLURP,一个旨在评估基于LLM的多智能体框架在智能个人助理场景下表现的基准数据集。Auto-SLURP在原有SLURP数据集——最初为自然语言理解任务开发——的基础上,通过重新标注数据并整合模拟服务器与外部服务进行了扩展。这一增强措施构建了一个全面的端到端评估流程,涵盖语言理解、任务执行及响应生成等多个环节。我们的实验表明,Auto-SLURP对当前最先进的框架构成了显著挑战,揭示了真正可靠且智能的多智能体个人助理仍处于发展之中。该数据集及相关代码已公开于https://github.com/lorashen/Auto-SLURP/。
English
In recent years, multi-agent frameworks powered by large language models
(LLMs) have advanced rapidly. Despite this progress, there is still a notable
absence of benchmark datasets specifically tailored to evaluate their
performance. To bridge this gap, we introduce Auto-SLURP, a benchmark dataset
aimed at evaluating LLM-based multi-agent frameworks in the context of
intelligent personal assistants. Auto-SLURP extends the original SLURP dataset
-- initially developed for natural language understanding tasks -- by
relabeling the data and integrating simulated servers and external services.
This enhancement enables a comprehensive end-to-end evaluation pipeline,
covering language understanding, task execution, and response generation. Our
experiments demonstrate that Auto-SLURP presents a significant challenge for
current state-of-the-art frameworks, highlighting that truly reliable and
intelligent multi-agent personal assistants remain a work in progress. The
dataset and related code are available at
https://github.com/lorashen/Auto-SLURP/.Summary
AI-Generated Summary