循环Copilot:用于音乐生成和迭代编辑的AI合奏
Loop Copilot: Conducting AI Ensembles for Music Generation and Iterative Editing
October 19, 2023
作者: Yixiao Zhang, Akira Maezawa, Gus Xia, Kazuhiko Yamamoto, Simon Dixon
cs.AI
摘要
创作音乐是一个迭代的过程,每个阶段都需要不同的方法。然而,现有的人工智能音乐系统在为多样化需求编排多个子系统方面存在不足。为了填补这一空白,我们引入了Loop Copilot,这是一个新颖的系统,可以让用户通过交互式的多轮对话界面生成并迭代地完善音乐。该系统使用一个大型语言模型来解释用户意图,并选择适当的人工智能模型来执行任务。每个后端模型都专门针对特定任务,它们的输出被汇总以满足用户的需求。为了确保音乐的连贯性,关键属性被保存在一个集中的表中。我们通过半结构化的访谈和问卷调查评估了所提出系统的有效性,突出了它不仅在促进音乐创作方面的实用性,还在更广泛应用方面的潜力。
English
Creating music is iterative, requiring varied methods at each stage. However,
existing AI music systems fall short in orchestrating multiple subsystems for
diverse needs. To address this gap, we introduce Loop Copilot, a novel system
that enables users to generate and iteratively refine music through an
interactive, multi-round dialogue interface. The system uses a large language
model to interpret user intentions and select appropriate AI models for task
execution. Each backend model is specialized for a specific task, and their
outputs are aggregated to meet the user's requirements. To ensure musical
coherence, essential attributes are maintained in a centralized table. We
evaluate the effectiveness of the proposed system through semi-structured
interviews and questionnaires, highlighting its utility not only in
facilitating music creation but also its potential for broader applications.