动态排版:赋予文字生命
Dynamic Typography: Bringing Words to Life
April 17, 2024
作者: Zichen Liu, Yihao Meng, Hao Ouyang, Yue Yu, Bolin Zhao, Daniel Cohen-Or, Huamin Qu
cs.AI
摘要
文本动画作为一种表达媒介,通过赋予文字运动,将静态沟通转化为动态体验,以唤起情感、强调含义并构建引人入胜的叙事。创作具有语义意识的动画面临重大挑战,需要在图形设计和动画方面具备专业知识。我们提出了一种自动文本动画方案,称为“动态排版”,结合了两个具有挑战性的任务。它通过改变字母形状传达语义含义,并根据用户提示赋予它们充满活力的运动。我们的技术利用矢量图形表示和端到端基于优化的框架。该框架采用神经位移场将字母转换为基本形状,并应用逐帧运动,鼓励与预期文本概念的一致性。采用形状保持技术和感知损失正则化以在整个动画过程中保持可读性和结构完整性。我们展示了我们的方法在各种文本到视频模型中的泛化能力,并突出了我们端到端方法的优越性,相对于可能包含独立任务的基准方法。通过定量和定性评估,我们展示了我们的框架在生成连贯的文本动画方面的有效性,它忠实地诠释用户提示并保持可读性。我们的代码可在以下网址找到:https://animate-your-word.github.io/demo/。
English
Text animation serves as an expressive medium, transforming static
communication into dynamic experiences by infusing words with motion to evoke
emotions, emphasize meanings, and construct compelling narratives. Crafting
animations that are semantically aware poses significant challenges, demanding
expertise in graphic design and animation. We present an automated text
animation scheme, termed "Dynamic Typography", which combines two challenging
tasks. It deforms letters to convey semantic meaning and infuses them with
vibrant movements based on user prompts. Our technique harnesses vector
graphics representations and an end-to-end optimization-based framework. This
framework employs neural displacement fields to convert letters into base
shapes and applies per-frame motion, encouraging coherence with the intended
textual concept. Shape preservation techniques and perceptual loss
regularization are employed to maintain legibility and structural integrity
throughout the animation process. We demonstrate the generalizability of our
approach across various text-to-video models and highlight the superiority of
our end-to-end methodology over baseline methods, which might comprise separate
tasks. Through quantitative and qualitative evaluations, we demonstrate the
effectiveness of our framework in generating coherent text animations that
faithfully interpret user prompts while maintaining readability. Our code is
available at: https://animate-your-word.github.io/demo/.