CAMAR:连续动作多智能体路径规划
CAMAR: Continuous Actions Multi-Agent Routing
August 18, 2025
作者: Artem Pshenitsyn, Aleksandr Panov, Alexey Skrynnik
cs.AI
摘要
多智能体强化学习(MARL)是解决协作与竞争决策问题的强大范式。尽管已提出众多MARL基准测试,但鲜有结合连续状态与动作空间,并包含复杂协调与规划任务的。我们引入CAMAR,一个专为连续动作环境下多智能体路径规划设计的新MARL基准。CAMAR支持智能体间的协作与竞争互动,并能以每秒高达100,000环境步的效率运行。我们还提出了一套三层评估协议,以更好地追踪算法进展,并支持对性能的深入分析。此外,CAMAR允许将RRT和RRT*等经典规划方法整合到MARL流程中,既作为独立基线,又将RRT*与流行MARL算法结合,形成混合方法。我们提供了一系列测试场景与基准工具,确保实验的可重复性与公平比较。实验表明,CAMAR为MARL社区提供了一个既具挑战性又贴近实际的测试平台。
English
Multi-agent reinforcement learning (MARL) is a powerful paradigm for solving
cooperative and competitive decision-making problems. While many MARL
benchmarks have been proposed, few combine continuous state and action spaces
with challenging coordination and planning tasks. We introduce CAMAR, a new
MARL benchmark designed explicitly for multi-agent pathfinding in environments
with continuous actions. CAMAR supports cooperative and competitive
interactions between agents and runs efficiently at up to 100,000 environment
steps per second. We also propose a three-tier evaluation protocol to better
track algorithmic progress and enable deeper analysis of performance. In
addition, CAMAR allows the integration of classical planning methods such as
RRT and RRT* into MARL pipelines. We use them as standalone baselines and
combine RRT* with popular MARL algorithms to create hybrid approaches. We
provide a suite of test scenarios and benchmarking tools to ensure
reproducibility and fair comparison. Experiments show that CAMAR presents a
challenging and realistic testbed for the MARL community.