KVzip:基于上下文重构的查询无关KV缓存压缩技术
KVzip: Query-Agnostic KV Cache Compression with Context Reconstruction
May 29, 2025
作者: Jang-Hyun Kim, Jinuk Kim, Sangwoo Kwon, Jae W. Lee, Sangdoo Yun, Hyun Oh Song
cs.AI
摘要
基于Transformer的大型语言模型(LLMs)在推理过程中将上下文缓存为键值对(KV)。随着上下文长度的增加,KV缓存规模随之扩大,导致显著的内存开销和注意力延迟增加。本文提出了KVzip,一种与查询无关的KV缓存淘汰方法,能够在多样化的查询中有效重用压缩后的KV缓存。KVzip通过底层LLM量化KV对的重要性,以从缓存的KV对中重建原始上下文,随后淘汰重要性较低的KV对。大量实验评估表明,KVzip将KV缓存大小减少了3至4倍,并将FlashAttention解码延迟降低了约2倍,同时在问答、检索、推理及代码理解任务中性能损失微乎其微。评估涵盖了多种模型,如LLaMA3.1-8B、Qwen2.5-14B和Gemma3-12B,上下文长度最高可达17万令牌。在多查询场景下,即使缓存预算比达到90%,KVzip也显著优于现有的查询感知型KV淘汰方法,后者在此条件下会出现性能下降。
English
Transformer-based large language models (LLMs) cache context as key-value
(KV) pairs during inference. As context length grows, KV cache sizes expand,
leading to substantial memory overhead and increased attention latency. This
paper introduces KVzip, a query-agnostic KV cache eviction method enabling
effective reuse of compressed KV caches across diverse queries. KVzip
quantifies the importance of a KV pair using the underlying LLM to reconstruct
original contexts from cached KV pairs, subsequently evicting pairs with lower
importance. Extensive empirical evaluations demonstrate that KVzip reduces KV
cache size by 3-4times and FlashAttention decoding latency by approximately
2times, with negligible performance loss in question-answering, retrieval,
reasoning, and code comprehension tasks. Evaluations include various models
such as LLaMA3.1-8B, Qwen2.5-14B, and Gemma3-12B, with context lengths reaching
up to 170K tokens. KVzip significantly outperforms existing query-aware KV
eviction methods, which suffer from performance degradation even at a 90% cache
budget ratio under multi-query scenarios.Summary
AI-Generated Summary