AWorld:精心编排智能体AI的训练方案
AWorld: Orchestrating the Training Recipe for Agentic AI
August 28, 2025
作者: Chengyue Yu, Siyuan Lu, Chenyi Zhuang, Dong Wang, Qintong Wu, Zongyue Li, Runsheng Gan, Chunfeng Wang, Siqi Hou, Gaochi Huang, Wenlong Yan, Lifeng Hong, Aohui Xue, Yanfeng Wang, Jinjie Gu, David Tsai, Tao Lin
cs.AI
摘要
实践学习范式对于开发具备能力的自主AI系统至关重要,然而其发展却因经验生成效率低下而严重受阻,这一瓶颈在GAIA等复杂基准测试中尤为突出。为解决这一问题,我们推出了AWorld,一个专为大规模智能体-环境交互设计的开源系统。通过将任务分布至集群执行,AWorld相较于标准的单节点顺序执行,将经验收集速度提升了14.6倍。这一关键性加速使得广泛的强化学习变得切实可行且可扩展。利用这一能力,我们训练了一个基于Qwen3-32B的智能体,其表现显著超越了基础模型,将GAIA整体准确率从21.59%提升至32.23%。在基准测试最具挑战性的层级上,我们的智能体取得了16.33%的得分,超越了领先的专有模型性能。我们的开源系统及其成果智能体,为从高效交互到可验证模型改进的完整自主AI训练流程,提供了一个实用的蓝图。
English
The learning from practice paradigm is crucial for developing capable Agentic
AI systems, yet it is severely hampered by inefficient experience generation, a
bottleneck especially pronounced in complex benchmarks like GAIA. To address
this, we introduce AWorld, an open-source system engineered for large-scale
agent-environment interaction. By distributing tasks across a cluster, AWorld
accelerates experience collection by 14.6x compared to standard single-node,
sequential execution. This critical speedup makes extensive reinforcement
learning practical and scalable. Leveraging this capability, we trained a
Qwen3-32B-based agent that significantly outperforms its base model, increasing
its overall GAIA accuracy from 21.59% to 32.23%. On the benchmark's most
challenging levels, our agent achieves a score of 16.33%, surpassing the
performance of leading proprietary models. Our open-source system and resulting
agent provide a practical blueprint for a complete agentic AI training
pipeline, from efficient interaction to demonstrable model improvement.