ChatPaper.aiChatPaper

AI智能体社会中是否涌现社交行为?以Moltbook为例的案例研究

Does Socialization Emerge in AI Agent Society? A Case Study of Moltbook

February 15, 2026
作者: Ming Li, Xirui Li, Tianyi Zhou
cs.AI

摘要

随着大型语言模型智能体在网络环境中的日益普及,一个根本性问题随之产生:人工智能(AI)智能体社会是否会经历与人类社交系统相似的趋同动态?近期,Moltbook模拟出一个可信的未来场景——自主智能体参与到一个开放持续演化的在线社会中。我们首次对这一AI智能体社会进行了大规模系统性诊断。除静态观测外,我们引入了量化诊断框架来追踪AI智能体社会的动态演化,测量指标包括语义稳定性、词汇更替率、个体惯性、影响力持续性以及集体共识度。分析表明Moltbook系统处于动态平衡状态:虽然全局语义平均值快速稳定,但个体智能体仍保持高度多样性及持续的词汇更新,并未出现同质化。然而,智能体表现出强烈的个体惯性和对交互对象极低的适应性响应,阻碍了相互影响与共识形成。因此,影响力仅短暂存在且未形成持久超级节点,由于缺乏共享社会记忆,该社会未能发展出稳定的集体影响力锚点。这些发现证明,仅凭规模与交互密度不足以引发社会化进程,为即将到来的新一代AI智能体社会提供了可操作的设计与分析原则。
English
As large language model agents increasingly populate networked environments, a fundamental question arises: do artificial intelligence (AI) agent societies undergo convergence dynamics similar to human social systems? Lately, Moltbook approximates a plausible future scenario in which autonomous agents participate in an open-ended, continuously evolving online society. We present the first large-scale systemic diagnosis of this AI agent society. Beyond static observation, we introduce a quantitative diagnostic framework for dynamic evolution in AI agent societies, measuring semantic stabilization, lexical turnover, individual inertia, influence persistence, and collective consensus. Our analysis reveals a system in dynamic balance in Moltbook: while global semantic averages stabilize rapidly, individual agents retain high diversity and persistent lexical turnover, defying homogenization. However, agents exhibit strong individual inertia and minimal adaptive response to interaction partners, preventing mutual influence and consensus. Consequently, influence remains transient with no persistent supernodes, and the society fails to develop stable collective influence anchors due to the absence of shared social memory. These findings demonstrate that scale and interaction density alone are insufficient to induce socialization, providing actionable design and analysis principles for upcoming next-generation AI agent societies.
PDF213February 19, 2026