MedMobile:具有专业水平临床能力的移动尺寸语言模型
MedMobile: A mobile-sized language model with expert-level clinical capabilities
October 11, 2024
作者: Krithik Vishwanath, Jaden Stryker, Anton Alaykin, Daniel Alexander Alber, Eric Karl Oermann
cs.AI
摘要
语言模型(LMs)已经展示了在医学领域专家级的推理和回忆能力。然而,计算成本和隐私问题正在成为广泛实施的障碍。我们介绍了phi-3-mini的简约适应版本MedMobile,这是一个拥有38亿参数的LM,可以在移动设备上运行,用于医学应用。我们展示了MedMobile在MedQA(USMLE)上获得了75.7%的分数,超过了医生的及格线(约60%),接近于其100倍大小模型的分数。随后,我们进行了一系列仔细的消融实验,并展示了思维链、集成和微调带来了最大的性能提升,而意外的检索增强生成未能显示出显著的改进。
English
Language models (LMs) have demonstrated expert-level reasoning and recall
abilities in medicine. However, computational costs and privacy concerns are
mounting barriers to wide-scale implementation. We introduce a parsimonious
adaptation of phi-3-mini, MedMobile, a 3.8 billion parameter LM capable of
running on a mobile device, for medical applications. We demonstrate that
MedMobile scores 75.7% on the MedQA (USMLE), surpassing the passing mark for
physicians (~60%), and approaching the scores of models 100 times its size. We
subsequently perform a careful set of ablations, and demonstrate that chain of
thought, ensembling, and fine-tuning lead to the greatest performance gains,
while unexpectedly retrieval augmented generation fails to demonstrate
significant improvementsSummary
AI-Generated Summary